Skip to main content
Comparative Cytogenetics logoLink to Comparative Cytogenetics
. 2014 Nov 14;8(4):275–291. doi: 10.3897/CompCytogen.v8i4.8789

Chromosome number evolution in skippers (Lepidoptera, Hesperiidae)

Vladimir A Lukhtanov 1,2
PMCID: PMC4296715  PMID: 25610542

Abstract Abstract

Lepidoptera (butterflies and moths), as many other groups of animals and plants, simultaneously represent preservation of ancestral karyotype in the majority of families with a high degree of chromosome number instability in numerous independently evolved phylogenetic lineages. However, the pattern and trends of karyotype evolution in some Lepidoptera families are poorly studied. Here I provide a survey of chromosome numbers in skippers (family Hesperiidae) based on intensive search and analysis of published data. I demonstrate that the majority of skippers preserve the haploid chromosome number n=31 that seems to be an ancestral number for the Hesperiidae and the order Lepidoptera at whole. However, in the tribe Baorini the derived number n=16 is the most typical state which can be used as a (syn)apomorphic character in further phylogenetic investigations. Several groups of skippers display extreme chromosome number variations on within-species (e.g. the representatives of the genus Carcharodus Hübner, [1819]) and between-species (e.g. the genus Agathymus Freeman, 1959) levels. Thus, these groups can be used as model systems for future analysis of the phenomenon of chromosome instability. Interspecific chromosomal differences are also shown to be useful for discovering and describing new cryptic species of Hesperiidae representing in such a way a powerful tool in biodiversity research. Generally, the skipper butterflies promise to be an exciting group that will significantly contribute to the growing knowledge of patterns and processes of chromosome evolution.

Keywords: Lepidoptera, Hesperiidae, karyotype evolution, chromosome number, cryptic species, phylogeny, chromosomal conservatism, chromosomal instability

Introduction

The main karyotypic features of organisms, particularly the number of chromosomes, tend to be stable within species (White 1973, King 1993). New chromosomal rearrangements usually originate as heterozygotes and are often – although not always (Lukhtanov et al. 2011) – associated with heterozygote disadvantage. The spread of such rearrangements to fixation within a large population has low probability (King 1993). Therefore, many organisms are characterized by chromosomal conservatism, a situation in which all closely related taxa demonstrate the same chromosome number.

In contrast to chromosomal conservatism, chromosomal instability characterizes situations where multiple closely related taxa (populations, subspecies and/or species) belonging to a single phylogenetic lineage differ drastically from each other by major chromosomal rearrangements, sometimes resulting in high variability in chromosome number.

Both phenomena - chromosomal conservatism and chromosomal instability - are clearly expressed in insects of the order Lepidoptera (butterflies and moths). The modal haploid number of chromosomes (n) of n = 31 or n = 30 (Suomalainen 1969, Lukhtanov 2000) is preserved in the majority of lepidopteran families (Robinson 1971). At the same time, numerous cases of chromosomal instability have been discovered in the butterfly families, e.g. in Papilionidae (Emmel et al. 1995), Pieridae (Lukhtanov 1991, Lukhtanov et al. 2011, Dinca et al. 2011), Nymphalidae (Brown et al. 1992, 2004, 2007a, 2007b) and Riodinidae (Brown et al. 2012). This phenomenon was analyzed in more detail in the family Lycaenidae (Kandul et al. 2004, 2007, Lukhtanov et al. 2005, 2006, 2008, Vershinina and Lukhtanov 2010, 2013, Vila et al. 2010, Talavera et al. 2013, Przybyłowicz et al. 2014).

Skippers (the family Hesperiidae) are studied to a lesser extent with the respect of karyotype evolution than the other butterfly families mentioned above (but see: Emmel and Trew 1973, Saura et al. 2013). This family includes about 4000 species under 567 genera and is a globally distributed group found in all continents except Antarctica (Warren et al. 2008). The tribal level classification of skippers, based on combined analysis of molecular and morphological data, was recently elaborated by Warren and colleagues (Warren et al. 2008, 2009).

Here I provide a first world-wide survey of chromosome numbers in skippers based on intensive search and analysis of published data.

Results

The results of literature search are presented in the Table below. It includes all the discovered chromosome counts except n=13 for Ochlodes venatus (Bremer et Grey, 1853), noted by Bigger (1960) as “Augiades venata”. The name Ochlodes venatus was long used for the Ochlodes species of Europe, but it actually refers to its Far Eastern sister species, and the European taxon is now called Ochlodes sylvanus (Esper, 1777) (ICZN 2000). Both European and Far Eastern species have the same chromosome number n=29 (Federley 1938, Lorković 1941, Abe et al. 2006), not n=13 as indicated by Bigger (1960). Thus, the species name used by Bigger (1960) was probably misidentification.

The classification of skippers accepted in this paper follows Warren and colleagues (Warren et al. 2008, 2009).

Discussion

Modal chromosomal numbers

The table gives the chromosome numbers of 205 species of skippers, i.e. about 5% of the species of the world fauna. This number is not enough to infer any final statements about peculiarities of chromosome numbers distribution within the Hesperiidae. However, several tentative conclusions can be made. The haploid chromosome number n=31 was found in 50 studied species of skippers and, thus, it is a clear modal number for the family at whole. Interestingly, n=31 was found in representatives of all investigated subfamilies, except for Heteropterinae. However, in the last subfamily only one species was karyologically studied until now, and discovery of n=31 in Heteropterinae is not excluded in future. The next most common numbers are n=29 (43 species), n=30 (33 species) and n=28 (13 species).

Subfamilies Coeliadinae and Eudaminae have a sharp peak at n=31. In the subfamily Trapezitinae n=31 was also found (only one species studied).

Within the subfamily Pyrginae, the modal number n=31 is found in the tribe Erynnini. The tribe Pyrrhopygini is characterized by the most common n=28. The modal number in the tribe Tagiadini is n=30. The tribe Carcharodini has peaks at n=30 and n=31. In the tribe Pyrgini, n=29, n=30 and n=31 were found as the most common numbers.

In the family Heteropterinae n=29 was found (only one species studied).

Within the subfamily Hesperiinae, the tribes Taractrocerini, Thymelicini, Calpodini, Moncini and Hesperiini are characterized by the most common n=29. Very variable chromosome numbers (from n=5 to n=50) were found in the tribe Aeromachini. It is difficult to infer the modal number for the last tribe. However, it should be noted that one species, Thoressa varia, has n=31 as the majority of other skippers. The tribe Baorini (subfamily Hesperiinae) has a clear peak at n=16, so it is exceptional with respect to the modal number of chromosomes.

The overall evidence indicates that chromosome numbers of Coeliadinae, Eudaminae, Trapezitinae, Pyrginae and Hesperiinae conform to the lepidopteran modal of n=31 (Robinson 1971). This number seems to be an ancestral one for the Hesperiidae as for the order Lepidoptera at whole (Suomalainen 1969, Lukhtanov 2000). This modal number (or its deviation to n=30, n=29 and 28) were preserved in the majority of skippers. However, in the tribe Baorini the number n=16 was evolved and, thus, represents a derived trait which can be used as a (syn)apomorphic character in further phylogenetic studies of the family Hesperiidae.

Between- and within-species variations in chromosome number

Several groups of skippers display extreme chromosome number variations at the within-species level (Table). The most extreme variations in number of chromosome elements were observed in first meiotic metaphase of Carcharodus boeticus, Carcharodus dravira and Carcharodus flocciferus (Table, de Lesse 1960). The nature of these variations remains unknown, and there are two plausible explanations for this phenomenon. First, this variation can be explained by presence of so-called B-chromosomes (=additional chromosomes, =supernumerary chromosomes) (de Lesse 1960). B-chromosomes consist mainly of repetitive DNA and can sometimes accumulate through processes of mitotic or meiotic drive (Jones et al. 2008). B-chromosomes can be distinguished from normal A-chromosomes because they are usually smaller and can be seen as additional chromosomes present in only some of the individuals in a population (Camacho et al. 2000, Jones et al. 2008).

Second, this kind of variation can be caused by violations in meiotic chromosome pairing resulting in appearance of univalents (instead of bivalents) in meiotic prophase (Lorković 1990). This type of variation was studied in detail by Maeki and Ae (1979) in butterfly genus Papilio and is expected if regular or irregular interspecific mating occurs in nature. Anyway, the nature of intraspecific variations observed in Carcharodus is different from that discovered in the Wood White butterfly Leptidea sinapis (Linnaeus, 1758) (Pieridae). In the last species the compared range of intraspecific variation in chromosome number (from n=28 to n=53) was caused by multiple chromosome fusions/fissions accumulated within the species (Lukhtanov et al. 2011, Dinca et al. 2011).

Between-species variation exists in numerous genera of skippers (Table 1) and is especially expressed in the Nearctic genus Agathymus Freeman, 1959, in which the range of haploid numbers was discovered from n =5 in Agathymus aryxna to n=38 in Agathymus alliae (Freeman 1969). This range is comparable of even exceeds the range found in chromosomally diverse genera from other butterfly families (Lorković 1990, Lukhtanov et al. 2005, Talavera et al. 2013). Thus, the genera of Hesperiidae can be used as model systems for future analysis of the phenomenon of chromosome instability.

Table 1.

Chromosome number of skippers (Lepidoptera, Hesperiidae) of the world fauna (Us are univalents; 2n is diploid chromosome number). <br/> Years of the species descriptions are given square brackets in cases where they were not stated in the original sources but were inferred from reliable external evidence.

# Species Haploid chromosome number Country Reference
Subfamily Coeliadinae
1 Bibasis aquilina (Speyer, 1879) 29 Japan Maeki 1953
Bibasis aquilina chrysaeglia (Butler, 1881) 31 (2n=62) Japan Abe et al. 2006
2 Bibasis jaina formosana Fruhstorfer, 1911 31 Taiwan Maeki and Ae 1968b
3 Choaspes benjaminii (Guérin-Méneville, 1843) 31 Japan Maeki 1953
Choaspes benjaminii japonica (Murray, 1875) 31 Japan Saitoh et al. 1978
4 Coeliades anchises jucunda (Butler, 1881) 30 Oman Saitoh 1982
5 Coeliades ernesti (Grandidier, 1867) 31 Madagascar de Lesse 1972
6 Coeliades fervida (Butler, 1880) 23 Madagascar de Lesse 1972
7 Coeliades forestan arbogastes (Guenee, 1863) 31 Madagascar de Lesse 1972
8 Coeliades ramanatek (Boisduval, 1833) 31 Madagascar de Lesse 1972
Subfamily Euschemoninae no chromosomal data available
Subfamily Eudaminae
9 Achalarus casica (Herrich-Schäffer, 1869) 29 USA (Texas) Emmel and Trew 1973
10 Achalarus lyciades (Geyer, 1832) 31 USA (Connecticut) Maeki 1961
11 Achalarus toxeus (Plötz, 1882) 16 Mexico Maeki and Remington 1960
12 Astraptes anaphus (Godman et Salvin, 1896) 31 Bolivia de Lesse 1967a
13 Astraptes fulgerator (Walch, 1775) 31 Peru Kumagai et al. 2010
14 Astraptes naxos (Hewitson, 1867) 31 Brazil Saura et al. 2013
15 Astraptes phalaecus (Godman et Salvin, 1893) 25 Guatemala de Lesse 1967a
16 Astraptes longipennis (Plötz, 1882) 31 Costa Rica Kumagai et al. 2010
31 Peru Kumagai et al. 2010
31 Brazil Kumagai et al. 2010
17 Autochton sp. 20, 21 Brazil Kumagai et al. 2010
18 Chioides albofasciatus (Hewitson, 1867) 31 Mexico de Lesse 1970a
Chioides albofasciatus (Hewitson, 1867) (as Chioides catillus) 31 Mexico Maeki and Remington 1960
Chioides albofasciatus (Hewitson, 1867) 31 USA (Texas) Emmel and Trew 1973
19 Entheus priassus pralina Evans, 1952 22 Brazil Saura et al. 2013
20 Epargyreus barisses (Hewitson, 1874) 31 Argentina de Lesse 1967
21 Epargyreus clarus (Cramer, 1775) 31 USA (Florida) Maeki 1961
22 Epargyreus clavicornis tenda Evans, 1955 ca 29–30 Guatemala de Lesse 1970a
23 Oechydrus chersis (Herrich-Schäffer, 1869) 31 Bolivia de Lesse 1967a
24 Phocides polybius phanias (Burmeister, 1880) 16 Brazil Saura et al. 2013
25 Tarsoctenus praecia plutia (Hewitson, 1857) 15 Brazil Saura et al. 2013
26 Thorybes pylades pylades (Scudder, 1870) 31 USA (Connecticut) Maeki 1961
27 Udranomia spitzi (Hayward, 1942) 29 Brazil de Lesse and Brown 1971
28 Urbanus dorantes dorantes (Stoll, 1790) 31 Mexico de Lesse 1970a
29 Urbanus doryssus doryssus (Swainson, 1831) 14 Costa Rica Kumagai et al. 2010
30 Urbanus proteus (Linnaeus, 1758) 31 Bolivia de Lesse 1967a
31 Mexico de Lesse 1970a
31 USA (Florida) Maeki 1961
31 Urbanus simplicius (Stoll, 1790) 31 Argentina de Lesse 1967a
32 Urbanus teleus (Hübner, 1821) 31 Argentina de Lesse 1967a
Subfamily Pyrginae
Tribe Pyrrhopygini
33 Elbella lamprus (Hopffer, 1874) 40 Brazil de Lesse 1970a
34 (?) Jemadia sp. 32(?) Brazil Saura et al. 2013
35 Mimoniades montana J. Zikán, 1938 27 Brazil Saura et al. 2013
36 Mimoniades nurscia (Swainson, 1821) 28 Ecuador de Lesse 1967a
Mimoniades nurscia malis (Godman et Salvin, 1879) 28 Colombia Saura et al. 2013
37 Mimoniades sp. 21 Colombia Saura et al. 2013
38 Mimoniades sp. 28 Colombia Saura et al. 2013
39 Mimoniades versicolor (Latreille, [1824]) 28 Brazil de Lesse and Brown 1971
40 Pyrrhopyge charybdis Westwood, 1852 14(?) Brazil Saura et al. 2013
41 Pyrrhopyge pelota Plötz, 1879 28 Argentina de Lesse 1967a
42 Pyrrhopyge sp. 15 Brazil Saura et al. 2013
43 Sarbia sp. 30 Brazil Saura et al. 2013
Tribe Tagiadini
44 Daimio tethys (Ménétriés, 1857) 30 Japan Maeki 1953, Maeki and Makino 1953
45 Daimio tethys moorei Mabille, 1876 30 Taiwan Maeki and Ae 1968b
46 Eagris lucetia (Hewitson, 1876) 30 Uganda de Lesse 1968
47 Eagris sabadius astoria Holland, 1896 30 Kenya de Lesse 1968
48 Eretis lugens (Rogenhofer, 1891 28 Kenya de Lesse 1968
Tribe Celaenorrhinini
49 Sarangesa phidyle (Walker, 1870) 29 Senegal de Lesse and Condamin 1962
Tribe Carcharodini
50 Carcharodus alceae (Esper, [1780]) 31 Croatia Lorković 1941
51 Carcharodus boeticus Reverdin, 1913 43–47 Spain de Lesse 1960
Carcharodus boeticus Reverdin, 1913 40–52 France de Lesse 1960
Carcharodus boeticus Reverdin, 1913 38–46 Italy de Lesse 1960
52 Carcharodus dravira (Moore, 1874) 37–48 (with Us) Iran de Lesse 1960
53 Carcharodus flocciferus (Zeller, 1847) 32–41 (with Us) France (Cauterets) de Lesse 1960
54 Carcharodus flocciferus (Zeller, 1847) 42–58 (with Us) Italy de Lesse 1960
55 Carcharodus lavatherae (Esper, [1783]) 30 France (Salau, Ariege) de Lesse 1960
56 Carcharodus orientalis Reverdin, 1913 31–32 Lebanon de Lesse 1960
30 Turkey (Van) de Lesse 1960
30–37 (with Us) Turkey (Amasya) de Lesse 1960
57 Carcharodus stauderi ambiguus Verity, 1925 30 Lebanon de Lesse 1960
30 Turkey de Lesse 1960
58 Hesperopsis alpheus (W. H. Edwards, 1876) (as Pholisora) 34 USA (Texas) Emmel and Trew 1973
59 Muschampia nomas (Lederer, 1855) 30 Lebanon de Lesse 1960
60 Muschampia proteides (Wagner, 1929) 30 Lebanon Larsen 1975
61 Muschampia proto (Ochsenheimer, 1808) 30 Spain de Lesse 1960
30 Lebanon Larsen 1975
62 Pholisora catullus (Fabricius, 1793) 29 ?USA Lorković in Robinson 1971
63 Spialia orbifer (Hübner, [1823]) 30 Croatia Lorković 1941
31 Turkey de Lesse 1960
64 Spialia phlomidis (Herrich-Schäffer, [1845]) 31 Turkey de Lesse 1960
65 Spialia sertorius (Hoffmannsegg, 1804) 31 Slovenia Lorković 1941
Tribe Erynnini
66 Chiomara asychis georgina (Reakirt, 1868) 31 Mexico de Lesse 1970a
Chiomara asychis georgina (Reakirt, 1868) 32 USA (Texas) Emmel and Trew 1973
67 Chiomara sp. 31 Trinidad Wesley and Emmel 1975
68 Ebrietas anacreon (Staudinger, 1876) 31 Argentina de Lesse 1967a
69 Ebrietas osyris (Staudinger, 1876) 31 Argentina de Lesse 1967a
70 Erynnis baptisiae (W. Forbes, 1936) 31 USA (Connecticut) Maeki 1961
71 Erynnis funeralis (Scudder et Burgess, 1870) 31 Argentina de Lesse 1967a
72 Erynnis horatius (Scudder et Burgess, 1870) 31 USA (Florida) Maeki 1961
73 Erynnis icelus (Scudder et Burgess, 1870) 30 USA (Connecticut) Maeki 1961
74 Erynnis juvenalis juvenalis (Fabricius, 1793) 30 USA (Connecticut) Maeki 1961
75 Erynnis lucilius (Scudder et Burgess, 1870) 31 USA (Connecticut) Maeki and Remington 1960a
76 Erynnis marloyi (Boisduval, [1834]) 31 Lebanon de Lesse 1960
77 Erynnis montanus (Bremer, 1861) 31 (2n=62) Japan Abe et al. 2006
Erynnis montanus (Bremer, 1861) 31 Japan Maeki 1953
78 E. persius (Scudder, 1863) 31 USA (Connecticut) Maeki 1961
79 Erynnis tages (Linnaeus, 1758) 31 Croatia Lorković 1941
31 France de Lesse 1960
31 England Bigger 1960
80 Erynnis tristis tatius (W. H. Edwards, 1883) 31 USA (Texas) Emmel and Trew 1973
81 Gesta gesta (Herrich-Schäffer, 1863) 32 Tobago Wesley and Emmel 1975
82 Grais stigmaticus (Mabille, 1883) 31 Mexico Maeki and Remington 1960a
83 Theagenes albiplaga (C. Felder et R. Felder, 1867) 31 Bolivia de Lesse 1967a
Tribe Achlyodidini
84 Achlyodes pallida (R. Felder, 1869) (as Achlyodes selva) 15 Bolivia de Lesse 1967a
15 Mexico de Lesse 1970a
85 Zera zera zera (Butler, 1870) 34 Brazil de Lesse and Brown 1971
Tribe Pyrgini
86 Anisochoria sublimbata Mabille, 1883 31 Argentina de Lesse 1967a
87 Antigonus erosus (Hübner, [1812]) 31 Mexico de Lesse 1970a
88 Antigonus liborius Plötz, 1884 31 Argentina de Lesse 1967a
89 Celotes nessus (W. H. Edwards, 1877) 14, 13 USA (Texas) Emmel and Trew 1973
90 Heliopetes arsalte (Linnaeus, 1758) 30 Bolivia de Lesse 1967a
Heliopetes arsalte (Linnaeus, 1758) 30 Mexico de Lesse 1970a
91 Heliopetes laviana (Hewitson, 1868) 29 USA (Texas) Emmel and Trew 1973
92 Heliopetes macaira (Reakirt, [1867]) 29 USA (Texas) Emmel and Trew 1973
93 Heliopetes omrina (Butler, 1870) 30 Argentina de Lesse 1967a
94 Heliopyrgus americanus (Blanchard, 1852) 30 Chile de Lesse 1967a
95 Paches loxus (Westwood, [1852]) 31 Guatemala de Lesse 1970a
96 Pyrgus aladaghensis De Prins et van der Poorten, 1995 ca 18–21 Turkey Lukhtanov and Kandul 1995 (in Hesselbarth et al. 1995)
97 Pyrgus albescens Plötz, 1884 30 (2n=60) USA (Texas) Goodpasture 1976
Pyrgus albescens Plötz, 1884 28 USA (Texas) Emmel and Trew 1973
98 Pyrgus alveus (Hübner, [1803]) 24 Finland Federley 1938
24 Croatia Lorković 1941
24 Turkey Lukhtanov and Kandul 1995 (in Hesselbarth et al. 1995)
99 Pyrgus bellieri (Oberthür, 1910) 27 France de Lesse 1960
100 Pyrgus bocchoris (Hewitson, 1874) 30 Argentina de Lesse 1967a
101 Pyrgus bolkariensis De Prins et van der Poorten, 1995 30 Turkey Lukhtanov and Kandul 1995 (in Hesselbarth et al. 1995)
102 Pyrgus cacaliae (Rambur, 1839) 30 Italy de Lesse 1960
103 Pyrgus carlinae (Rambur, [1839]) 30 Italy de Lesse 1960
104 Pyrgus carthami (Hübner, [1813]) 29 Italy de Lesse 1960
105 Pyrgus cirsii (Rambur, [1839]) 30 France (Peyreleau, Aveyron) de Lesse 1960
106 Pyrgus fides Hayward, 1940 30 Chile de Lesse 1967a
107 Pyrgus maculates (Bremer et Grey, 1852) 31 (2n=62) Japan Abe et al. 2006
108 Pyrgus malvae (Linnaeus, 1758) 31 Finland Federley 1938
33 England Bigger 1960
109 Pyrgus oileus (Linnaeus, 1767) 30 (2n=60) USA (Texas) Goodpasture 1976
32 USA (Texas) Emmel and Trew 1973
110 Pyrgus onopordi (Rambur, [1839]) 30 France Lorković 1941
111 Pyrgus serratulae (Rambur, [1839]) 30 France Lorković 1941
112 Trina geometrina geometrina (C. Felder et R. Felder, 1867) 31 Brazil de Lesse and Brown 1971
Subfamily Heteropterinae
113 Butleria quilla Evans, 1939 29 Chile de Lesse 1967a
Subfamily Trapezitinae
114 Trapezites eliena Hewitson, 1868 31 Australia Maeki and Ogata 1971
Subfamily Hesperiinae
Tribe Aeromachini
115 Aegiale hesperiaris (Walker, 1856) 24 Mexico Freeman 1969
116 Agathymus alliae (Stallings et Turner, 1957) 38 USA (Arizona) Freeman 1969
117 Agathymus aryxna (Dyar, 1905) 5 Mexico Freeman 1969
118 Agathymus baueri (Stallings et Turner, 1954) 15 USA (Arizona) Freeman 1969
119 Agathymus chisosensis (Freeman, 1952) 18 USA (Texas) Freeman 1969
120 Agathymus estelleae valverdiensis Freeman, 1966 9 USA (Texas) Freeman 1969
Agathymus estelleae estelleae (Stallings et Turner, 1958) 9 Mexico Freeman 1969
121 Agathymus freemani Stallings, Turner et Stallings, 1960 15 USA (Arizona) Freeman 1969
122 Agathymus gilberti Freeman, 1964 21 USA (Texas) Freeman 1969
123 Agathymus mariae chinatiensis Freeman, 1964 22 USA (Texas) Freeman 1969
Agathymus mariae lajitaensis Freeman, 1964 22 USA (Texas) Freeman 1969
Agathymus mariae mariae (Barnes et Benjamin, 1924) 22 USA or Mexico Freeman 1969
Agathymus mariae rindgei Freeman, 1964 22 USA (Texas) Freeman 1969
124 Agathymus micheneri Stallings, Turner et Stallings, 1961 20 Mexico Freeman 1969
125 Agathymus neumoegeni florenceae (Stallings et Turner, 1957) 10 USA (Texas) Freeman 1969
Agathymus neumoegeni macalpinei (Freeman, 1955) 10 USA (Texas) Freeman 1969
126 Agathymus polingi (Skinner, 1905) 10 USA (Arizona) Freeman 1969
127 Agathymus remingtoni (Stallings et Turner, 1958) 9 Mexico Freeman 1969
128 Alera vulpina (C. Felder et R. Felder, 1867) ca27 Ecuador de Lesse 1967a
129 Ankola fan (Holland, 1844) 10 Uganda De Lesse 1968
130 Arotis derasa (Herrich-Schäffer, 1870) (as Euphyes) 28 Brazil de Lesse and Brown 1971
131 Erionota thrax thrax (Linnaeus, 1767) 29 Malaysia Saitoh and Kumagai 1974
132 Euphyes leptosema Mabille, 1891 ca28 Argentina de Lesse 1967a
133 Megathymus coloradensis coloradensis Riley, 1877 27 USA Freeman 1969
134 Megathymus coloradensis kendalli Freeman, 1965 27 USA (South central Texas) Freeman 1969
Megathymus coloradensis louiseae Freeman, 1963 27 USA (Western Texas) Freeman 1969
Megathymus coloradensis navajo Skinner, 1911 27 USA Freeman 1969
Megathymus coloradensis reinthali Freeman, 1963 27 USA (Texas) Freeman 1969
Megathymus coloradensis reubeni Stallings, Turner et Stallings, 1963 27 USA (Texas) Freeman 1969
Megathymus coloradensis stallingsi Freeman, 1943 27 USA Freeman 1969
Megathymus coloradensis wilsonorum Stallings et Turner, 1958 27 ?Mexico Freeman 1969
135 Megathymus violae Stallings et Turner, 1956 27 USA Maeki 1961, Freeman 1969
136 Megathymus yuccae buchholzi Freeman, 1952 26 USA (Florida) Freeman 1969
137 Pardaleodes incerta (Snellen, 1872) 17 Uganda de Lesse 1968
138 Stallingsia maculosus (Freeman, 1955) 50 USA (Texas) Maeki 1961, Freeman 1969
139 Suastus gremius (Fabricius, 1798) 23 Taiwan Maeki and Ae 1968b
140 Thoressa varia (Murray, 1875) 31 (2n=62) Japan Abe et al. 2006
141 Thoressa varia (Murray, 1875) 31 Japan Maeki 1953
Tribe Baorini
142 Gegenes gambica (Mabille, 1878) 41 Yemen Saitoh 1984
41 Turkey de Lesse 1960
41 Lebanon Larsen 1982
143 Gegenes nostrodamus (Fabricius, 1793) 15 Egypt Larsen 1982
15 Israel Saitoh 1979, Larsen 1982
144 Gegenes pumilio (Hoffmansegg, 1804) 24 France de Lesse 1960
24 Alger de Lesse 1967b
145 Parnara guttata (Bremer et Grey, 1852) 16 Japan Maeki 1953, Maeki and Makino 1953
16 China Saitoh and Abe 1981
146 Pelopidas conjucta conjucta (Herrich-Schäffer, 1869) 16 Hong Kong Maeki and Ae 1968a
147 Pelopidas jansonis (Butler, 1878) 16 (2n=32) Japan Abe et al. 2006
148 Pelopidas mathias (Fabricius, 1798) 16 Japan Maeki and Remington 1960
149 Pelopidas thrax (Hübner, [1821]) 16 Lebanon Larsen 1975
150 Polytremis lubricans (Herrich-Schäffer, 1869) 16 Taiwan Maeki and Ae 1968b
151 Polytremis pellucida (Murray, 1875) 16, 17, 18 (2n=32, 33) Japan Abe et al. 2006
16 Japan Maeki and Remington 1960
152 Zenonia zeno (Trimen, 1864) 16 Uganda de Lesse 1968
Tribe Taractrocerini
153 Ocybadistes walkeri sothis Waterhouse, 1933 28 Australia Maeki and Ogata 1971
154 Potanthus flavus (Murray, 1875) 29 (2n=58) Japan Abe et al. 2006
155 Telicota ancilla horisha Evans, 1934 29 Taiwan Maeki and Ae 1968b
156 Telicota colon stinga Evans, 1949 29 Japan (Okinava) Abe et al. 2006
157 Telicota ohara formosana Fruhstorfer, 1911 29 (2n=58) Taiwan Abe et al. 2006
Tribe Thymelicini
158 Copaeodes minima (W.H. Edwards, 1870) 29 USA (Florida) Maeki 1961
159 Thymelicus sylvestris (Poda, 1761) 27 England Bigger 1960
160 Thymelicus sylvaticus (Bremer, 1861) 10 (2n=20) Japan Abe et al. 2006
161 Thymelicus acteon (Rottemburg, 1775) 28 Spain de Lesse 1970c
162 Thymelicus hyrax (Lederer, 1861) 29 Lebanon Larsen 1975
163 Thymelicus leoninus (Butler, 1878) 9 (2n=18) Japan Abe et al. 2006
164 Thymelicus lineola (Ochsenheimer, 1808) 29 Finland Federley 1938
29 Lebanon Larsen 1975
Tribe Calpodini
165 Ebusus ebusus (Cramer, [1780]) 29 Mexico de Lesse 1970a
166 Lychnuchus celsus (Fabricius, 1793) 30 Brazil de Lesse and Brown 1971
167 Panoquina hecebolus (Scudder, 1872) 29 USA (Texas) Emmel and Trew 1973
168 Panoquina ocola (W. H. Edwards, 1863) 29 USA (Texas) Emmel and Trew 1973
169 Panoquina panoquin (Scudder, 1863) 29 USA (Florida) Maeki 1961
170 Panoquina panoquinoides (Skinner, 1891) 29 USA (Texas) Emmel and Trew 1973
Tribe Anthoptini no chromosomal data available
Tribe Moncini
171 Amblyscirtes aenus W.H. Edwards, 1878 28, 29 USA (Texas) Emmel and Trew 1973
172 Amblyscirtes cassus W. H. Edwards, 1883 29 USA (Texas) Emmel and Trew 1973
173 Amblyscirtes celia (Skinner, 1895) 29 USA (Texas) Emmel and Trew 1973
174 Amblyscirtes phylace W.H. Edwards, 1878 29 USA (Texas) Emmel and Trew 1973
175 Amblyscirtes texanae Bell, 1927 29 USA (Texas) Emmel and Trew 1973
176 Amblyscirtes vialis (W. H. Edwards, 1862) 29 USA (Connecticut) Maeki 1961
177 Cymaenes sp. 31 Tobago Wesley and Emmel 1975
178 Enosis immaculata immaculata (Hewitson, 1868) 29 Ecuador Kumagai et al. 2010
179 Lerema accius (Smith, 1797) 29 (2n=58) USA (Texas) Goodpasture 1976
29 USA (Texas) Emmel and Trew 1973
180 Moeris vopiscus (Herrich-Schäffer, 1869) 27 Peru Kumagai et al. 2010
181 Nastra lherminier (Latreille, [1824]) 30 USA (Connecticut) Maeki 1961
182 Thargella caura (Plötz, 1882)
25 Brazil de Lesse and Brown 1971
183 Vettius coryna (Hewitson, [1866]) 31, ca32 Ecuador de Lesse 1967a
184 Vettius phyllus prona Evans, 1955 26 Brazil de Lesse and Brown 1971
185 Vettius triangularis (Hübner, [1831]) 26 Brazil Kumagai et al. 2010
Tribe Hesperiini
186 Asbolis capucinus (Lucas, 1857) 48 USA (Florida) Maeki 1961
187 Cynea iquita (Bell, 1941) 29 Argentina de Lesse 1967a
188 Hesperia comma (Linnaeus, 1758) 28 Italy de Lesse 1970c
28 Lebanon Larsen 1975
189 Hesperia florinda Butler, 1878 28 (2n=56) Japan Abe et al. 2006
190 Hylephila fasciolata (Blanchard, 1852) 29 Argentina de Lesse 1967a
191 Hesperia phyleus (Drury, 1773) 29 Argentia de Lesse 1967a
29 USA (Florida) Maeki 1961
192 Hesperia signata (Blanchard, 1852) 29 Chile de Lesse 1967a
193 Ochlodes ochraceus (Bremer, 1861) 29 (2n=58) Japan Abe et al. 2006
24 Japan Maeki and Remington 1960
194 Ochlodes sylvanoides (Boisduval, 1852) 29 USA Maeki 1961
195 Ochlodes sylvanus (Esper, 1777) 29 Finland Federley 1938
29 Croatia Lorković 1941
196 Ochlodes venatus (Bremer et Grey, 1853) (as sylvanus Esper, 1777) 29 (2n=58) Japan Abe et al. 2006
197 Oligoria maculata (W. H. Edwards, 1865) 29 USA (Florida) Maeki 1961
198 Poanes hobomok hobomok (Harris, 1862) 29 ?USA Lorković in Robinson 1971
199 Poanes taxiles (W. H. Edwards, 1881) 29 USA Maeki 1961
200 Poanes zabulon (Boisduval et Le Conte, [1837]) (as Polites zabulon) 29 USA (Connecticut) Maeki 1961
201 Polites themistocles (Latreille, [1824]) 29 USA (Florida) Maeki 1961
202 Poanes vibex catilina (Plötz, 1886) 29 Argentina de Lesse 1967a
Poanes vibex praeceps (Scudder, 1872) 27 USA (Texas) Emmel and Trew 1973
Poanes vibex vibex (Geyer, 1832) 29 USA (Florida) Maeki 1961
203 Wallengrenia egeremet (Scudder, 1863) 28 USA (Texas) Emmel and Trew 1973
204 Wallengrenia otho curassavica (Snellen, 1887) 28–30 USA (Texas) Emmel and Trew 1973
205 Wallengrenia premnas (Wallengren, 1860) 27 Argentina de Lesse 1967

Detecting cryptic species using analysis of chromosomal differences

Recent years karyological data have been widely used in studies of butterfly taxonomy and in biodiversity research as main or additional chracters for detecting cryptic species (e.g. Dinca et al. 2011) and for synonymizing biological entities that were incorrectly described as distinct species (e.g. Vila et al. 2010). The family Hesperiidae is not excluded in this respect. In the genus Gegenes Hübner, [1819], two cryptic species Gegenes pumilio (n=24) and Gegenes gambica (n=41) were discovered through extensive chromosome analysis of different populations (de Lesse 1960, 1967b, Larsen 1982, Saitoh 1984).

In the genus Pyrgus Hübner, [1819], our unpublished chromosome data (see Table) were used to recognize and then to describe two morphologically similar species, Pyrgus bolkariensis and Pyrgus aladaghensis (De Prins and van der Poorten 1995).

Thus, interspecific chromosomal differences are useful for discovering and describing new cryptic species of Hesperiidae representing in such a way a powerful tool in biodiversity research.

Acknowledgements

I thank A. Warren (University of Florida) for help and consultations in taxonomy and nomenclature of skippers. The study was supported by the Russian Foundation for Basic Research: mainly by grant RFBR 13-04-92716-IND-a and partially by grant RFBR 14-04-01051-a.

Citation

Lukhtanov VA (2014) Chromosome number evolution in skippers (Lepidoptera, Hesperiidae). Comparative Cytogenetics 8(4): 275–291. doi: 10.3897/CompCytogen.v8i4.8789

References

  1. Abe A, Kushibiki M, Kudoh K. (2006) A study of male germ-line chromosomes in 14 species of the Hesperiidae (Lepidoptera). Transactions of the Lepidopterological Society of Japan 57(3): 217–228. [Google Scholar]
  2. Bigger TRL. (1960) Chromosome numbers of Lepidoptera. Entomologist’s Gazette 11: 149–152. [Google Scholar]
  3. Brown KS Jr, Emmel TC, Eliazar PJ, Suomalainen E. (1992) Evolutionary patterns in chromosome numbers in neotropical Lepidoptera. I. Chromosomes of the Heliconiini (Family Nymphalidae: Subfamily Nymphalinae). Hereditas 117(2): 109–125. doi: 10.1111/j.1601-5223.1992.tb00165.x [DOI] [PubMed] [Google Scholar]
  4. Brown KS Jr, Freitas AVL, von Schoultz B, Saura AO, Saura A. (2007a) Chromosomal evolution of South American frugivorous butterflies in the Satyroid clade (Nymphalidae: Charaxinae, Morphinae and Satyrinae). Biological Journal of the Linnean Society 92: 467–481. doi: 10.1111/j.1095-8312.2007.00872.x [Google Scholar]
  5. Brown KS Jr, Freitas AVL, Wahlberg N, von Schoultz B, Saura AO, Saura A. (2007b) Chromosomal evolution in the South American Nymphalidae. Hereditas 144(4): 137–148. doi: 10.1111/j.2007.0018-0661.02015.x [DOI] [PubMed] [Google Scholar]
  6. Brown KS Jr, von Schoultz B, Suomalainen E. (2004) Chromosome evolution in Neotropical Danainae and Ithomiinae (Lepidoptera). Hereditas 141(3): 216–236. doi: 10.1111/j.1601-5223.2004.01868.x [DOI] [PubMed] [Google Scholar]
  7. Brown KS Jr, von Schoultz B, Saura AO, Saura A. (2012) Chromosomal evolution in the South American Riodinidae (Lepidoptera: Papilionoidea). Hereditas 149(4): 128–138. doi: 10.1111/j.1601-5223.2012.02250.x [DOI] [PubMed] [Google Scholar]
  8. Camacho JPM, Sharbel TF, Beukeboom LW. (2000) B-chromosome evolution. Philosophical Transactions of the Royal Society London B 355: 163–178. doi: 10.1098/rstb.2000.0556 [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. de Lesse H. (1960) Spéciation et variation chromosomique chez les Lépidoptères Rhopalocères. Annales des Sciences Naturelles (Ser. 12) 2: 1–223. [Google Scholar]
  10. de Lesse H. (1967a) Les nombres de chromosomes chez les Lépidoptères Rhopalocères néotropicaux. Annales de la Societe Entomologique de France (NS) 3: 67–136. [Google Scholar]
  11. de Lesse H. (1967b) Formules chromosomiques de Lépidoptères Rhopalocères d’Afrique du Nord. Bulletin de la Société entomologique de France 72: 20–25. [Google Scholar]
  12. de Lesse H. (1968) Formules chromosomiques de Lépidoptères Rhopalocères d´Uganda et du Kenya. Annales de la Societe Entomologique de France (NS) 4: 581–599. [Google Scholar]
  13. de Lesse H. (1970a) Les nombres de chromosomes chez les Lépidoptères Rhopalocères en Amérique centrale et Colombie. Annales de la Societe Entomologique de France (NS) 6: 347–358. [Google Scholar]
  14. de Lesse H. (1970b) Formules chromosomiques de quelques Lépidoptères Rhopalocères de Guyane. Annales de la Societe Entomologique de France (NS) 6: 849–855. [Google Scholar]
  15. de Lesse H. (1970c) Formules chromosomiques de quelques Rhopalocères paléarctiques [Lep.]. Bulletin de la Société entomologique de France 75: 214–218. [Google Scholar]
  16. de Lesse H. (1972) Nombres de chromosomes de quelques Lépidoptères Rhopalocères de Madagascar. Bulletin de la Société entomologique de France 77: 9–11. [Google Scholar]
  17. de Lesse H, Brown KS Jr. (1971) Formules chromosomiques de Lépidoptères Rhopalocères du Bresil. Bulletin de la Société entomologique de France 76: 131–137. [Google Scholar]
  18. de Lesse H, Condamin M. (1962) Formules chromosomiques de quelques Lépidoptères Rhopalocères du Sénégal. Bulletin de L’Institut Français d’Afrique Noire. Série A, Sciences Naturalles 24(2): 464–473. [Google Scholar]
  19. De Prins W, van der Poorten D. (1995) Rhopalocera and Grypocera of Turkey 14. Taxonomic revision of the Pyrgus alveus (Hübner, [1803]) complex from Greece to West China, with description of two new species from southern Turkey (Lepidoptera: Hesperiidae). Phegea 23(1): 1–44. [Google Scholar]
  20. Emmel TC, Eliazar PJ, Brown KS Jr, Suomalainen E. (1995) Chromosome evolution in the Papilionidae. In: Scriber JM, Tsubaki Y, Lederhouse RC. (Eds) Swallowtail butterflies: their ecology and evolution.Scientific Publishers, Gainesville, 283–298.
  21. Emmel TC, Trew HR. (1973) Chromosomes of skipper butterflies from Southwestern North-America (Lepidoptera, Hesperiidae). Cytologia 38(1): 45–53. doi: 10.1508/cytologia.38.45 [DOI] [PubMed] [Google Scholar]
  22. Federley H. (1938) Chromosomenzahlen finnländischer Lepidopteren. I. Rhopalocera. Hereditas 24: 397–464. doi: 10.1111/j.1601-5223.1938.tb03219.x [Google Scholar]
  23. Freeman HA. (1969) Systematic review of the Megathymidae. Journal of the Lepidopterist’s Society 23(Supplement 1): 1–59. [Google Scholar]
  24. Goodpasture C. (1976) High-resolution chromosome analysis in Lepidoptera. Annals of the Entomological Society of America 69(4): 764–771. [Google Scholar]
  25. Dinca V, Lukhtanov VA, Talavera G, Vila R. (2011) Unexpected layers of cryptic diversity in Wood White Leptidea butterflies. Nature Communications 2: 1-234. doi: 10.1038/ncomms1329 [DOI] [PubMed] [Google Scholar]
  26. Hesselbarth G, Van Oorschot H, Wagener S. (1995) Die Tagfalter der Türkei unter Berücksichtigung der angrenzenden Länder. Vol. 1-3. Bocholt, Selbstverlag S. Wagener, 1354 pp. [Google Scholar]
  27. ICZN (2000) Opinion 1944: Papilio sylvanus Esper, 1777 (currently known as Ochlodes sylvanus or O. venatus faunus; Insecta, Lepidoptera: specific name conserved. Bulletin of Zoological Nomenclature 57: 56–57. [Google Scholar]
  28. Jones RN, González-Sánchez M, González-García M, Vega JM, Puertas MJ. (2008) Chromosomes with a life of their own. Cytogenetic and Genome Research 120: 265–280. doi: 10.1159/000121076 [DOI] [PubMed] [Google Scholar]
  29. Kandul NP, Lukhtanov VA, Dantchenko AV, Coleman JWS, Sekercioglu CH, Haig D, Pierce NE. (2004) Phylogeny of Agrodiaetus Hübner 1822 (Lepidoptera: Lycaenidae) inferred from mtDNA sequences of COI and COII and nuclear sequences of EF1-α: Karyotype diversification and species radiation. Systematic Biology 53(2): 278–298. doi: 10.1080/10635150490423692 [DOI] [PubMed] [Google Scholar]
  30. Kandul NP, Lukhtanov VA, Pierce NE. (2007) Karyotypic diversity and speciation in Agrodiaetus butterflies. Evolution 61(3): 546–559. doi: 10.1111/j.1558-5646.2007.00046.x [DOI] [PubMed] [Google Scholar]
  31. King M. (1993) Species evolution. Cambridge, 336 pp. [Google Scholar]
  32. Kumagai Y, Abe A, Kudoh K. (2010) A survey of chromosome numbers of seven species of Hesperiidae in the neotropical region (Lepidoptera). Transactions of the Lepidopterological Society of Japan 61(1): 87–91. [Google Scholar]
  33. Larsen TB. (1975) Chromosome numbers and notes on testicular morphology of some Lebanese Rhopalocera (Insecta Lepidoptera). Entomologica Scandinavica 6(3/4): 253–260. doi: 10.1163/187631275X00091 [Google Scholar]
  34. Larsen TB. (1982) Gegenes pumilio Hoffmannsegg, 1804; a review with cytological evidence that two species are involved (Hesperiidae). Nota Lepidopterologica 5(2/3): 103–110. [Google Scholar]
  35. Lorković Z. (1941) Die Chromosomenzahlen in der Spermatogenese der Tagfalter. Chromosoma 2: 155–191. doi: 10.1007/BF00325958 [Google Scholar]
  36. Lorković Z. (1990) The butterfly chromosomes and their application in systematics and phylogeny. In: Kudrna O. (Ed.) Butterflies of Europe.Volume 2. Wiesbaden, Aula-Verlag, 332–396.
  37. Lukhtanov VA. (1991) Evolution of the karyotype and system of higher taxa of the Pieridae (Lepidoptera) of the world fauna. Entomologicheskoe Obozrenie 70(3): 619–641. [Google Scholar]
  38. Lukhtanov VA. (2000) Sex chromatin and sex chromosome systems in nonditrysian Lepidoptera (Insecta). Journal of Zoological Systematics and Evolutionary Research 38(2): 73–79. doi: 10.1046/j.1439-0469.2000.382130.x [Google Scholar]
  39. Lukhtanov VA, Dinca V, Talavera G, Vila R. (2011) Unprecedented within-species chromosome number cline in the Wood White butterfly Leptidea sinapis and its significance for karyotype evolution and speciation. BMC Evolutionary Biology 11: 109. doi: 10.1186/1471-2148-11-109 [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Lukhtanov VA, Kandul NP, Plotkin JB, Dantchenko AV, Haig D, Pierce NE. (2005) Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies. Nature 436(7049): 385–389. doi: 10.1038/nature03704 [DOI] [PubMed] [Google Scholar]
  41. Lukhtanov VA, Shapoval NA, Dantchenko AV. (2008) Agrodiaetus shahkuhensis sp. n. (Lepidoptera, Lycaenidae), a cryptic species from Iran discovered by using molecular and chromosomal markers. Comparative Cytogenetics 2(2): 99–114. [Google Scholar]
  42. Lukhtanov VA, Vila R, Kandul NP. (2006) Rearrangement of the Agrodiaetus dolus species group (Lepidoptera, Lycaenidae) using a new cytological approach and molecular data. Insect Systematics and Evolution 37(3): 325–334. doi: 10.1163/187631206788838563 [Google Scholar]
  43. Maeki K. (1953) A chromosome study of Japanese butterflies. Kwansei Gakuin Iniversity Annual Studies 1: 67–70. [Google Scholar]
  44. Maeki K. (1961) Chromosome numbers of butterflies from North America. Zoological Magazine (Tokyo) 70: 165–169. [Google Scholar]
  45. Maeki K, Ae A. (1968a) A chromosome study of seventeen species of butterflies from Hong Kong (Lep. Rhopalocera). Kontyu 36(1): 65–74. [Google Scholar]
  46. Maeki K, Ae A. (1968b) Studies of the chromosomes of Formosan Rhopalocera. 1. Papilionidae and Hesperiidae. Kontyu 36(2): 116–123. [Google Scholar]
  47. Maeki K, Ae A. (1979) Chromosomal studies in interspecific hybrids of butterflies (Papilionidae, Lepidoptera). XV. Proceedings of the Japan Academy (B) 55: 295–299. [Google Scholar]
  48. Maeki K, Makino S. (1953) Chromosome numbers of some Japanese Rhopalocera. Lepidoptera News 7: 36–38. [Google Scholar]
  49. Maeki K, Ogata M. (1971) A chromosome study of eighteen species of butterflies from Australia (Lep. Rhopalocera). Kontyu 39(1): 1–8. [Google Scholar]
  50. Maeki K, Remington CL. (1960) Studies of the chromosomes of North American Rhopalocera 2. Hesperiidae, Megathymidae and Pieridae. The Journal of the Lepidopterists’ Society 14: 37–57. [Google Scholar]
  51. Przybyłowicz Ł, Lukhtanov V, Lachowska-Cierlik D. (2014) Towards the understanding of the origin of the Polish remote population of Polyommatus (Agrodiaetus) ripartii (Lepidoptera: Lycaenidae) based on karyology and molecular phylogeny. Journal of Zoological Systematics and Evolutionary Research 52(1): 44–51. doi: 10.1111/jzs.12040 [Google Scholar]
  52. Robinson R. (1971) Lepidoptera genetics. Pergamon Press, Oxford, 687 pp. [Google Scholar]
  53. Saitoh K. (1979) A note on the haploid karyotype of the Mediterranean skipper Gegenes nostrodamus (Lepidoptera, Hesperiidae) from Israel. Chromosome Information Service 27: 8–9. [Google Scholar]
  54. Saitoh K. (1982) Spermatocyte chromosomes of five taxa of Rhopalocera from Oman. Chromosome Information Service 33: 10–12. [Google Scholar]
  55. Saitoh K. (1984) Chromosomes of three butterfly taxa from Yemen. Tyo to Ga 34(4): 167–170. [Google Scholar]
  56. Saitoh K, Abe A. (1981) Chromosome numbers in twenty-four taxa of Rhopalocera from the People’s Republic of China. Chromosome Information Service 31: 18–19. [Google Scholar]
  57. Saitoh K, Kumagai Y. (1974) Notes on the spermatocyte chromosomes of four species of west Malaysian butterflies. Chromosome Information Service 16: 4–6. [Google Scholar]
  58. Saitoh K, Abe A, Kudoh K. (1978) Meiotic chromosomes of Choaspes benjaminii japonica (Lepidoptera, Hesperiidae). Chromosome Information Service 25: 28–29. [Google Scholar]
  59. Saitoh K, Kumagai Y, Abe A. (1991) Notes on the spermatocyte chromosomes of six taxa of Formosan butterflies. Tyo to Ga 42(2): 47−51. [Google Scholar]
  60. Saura A, von Schoultz B, Saura AO, Brown KS Jr. (2013) Chromosome evolution in Neotropical butterflies. Hereditas 150: 26–37. doi: 10.1111/j.1601-5223.2013.00008.x [DOI] [PubMed] [Google Scholar]
  61. Suomalainen E. (1969) Chromosome evolution in the Lepidoptera. Chromosomes Today 2: 132–138. [Google Scholar]
  62. Talavera G, Lukhtanov V, Rieppel L, Pierce NE, Vila R. (2013) In the shadow of phylogenetic uncertainty: the recent diversification of Lysandra butterflies through chromosomal change. Molecular Phylogenetics and Evolution 69: 469–478. doi: 10.1016/j.ympev.2013.08.004 [DOI] [PubMed] [Google Scholar]
  63. Vershinina AO, Lukhtanov VA. (2010) Geographical distribution of the cryptic species Agrodiaetus alcestis alcestis, A. alcestis karacetinae and A. demavendi (Lepidoptera, Lycaenidae) revealed by cytogenetic analysis. Comparative Cytogenetics 4(1): 1–11. doi: 10.3897/compcytogen.v4i1.21 [Google Scholar]
  64. Vershinina AO, Lukhtanova VA. (2013) Dynamics of chromosome number evolution in the Agrodiaetus phyllis species complex (Insecta: Lepidoptera). Cell and Tissue Biology 7(4): 379–381. doi: 10.1134/S1990519X13040159 [PubMed] [Google Scholar]
  65. Vila R, Lukhtanov VA, Talavera G, Gil-T F, Pierce NE. (2010) How common are dot-like distribution ranges? Taxonomical oversplitting in Western European Agrodiaetus (Lepidoptera, Lycaenidae) revealed by chromosomal and molecular markers. Biological Journal of the Linnean Society 101: 130–154. doi: 10.1111/j.1095-8312.2010.01481.x [Google Scholar]
  66. Warren AD, Ogawa J, Brower AVZ. (2008) Phylogenetic relationships of subfamilies and circumscription of tribes in the family Hesperiidae (Lepidoptera: Hesperioidea). Cladistics 24: 642–676. doi: 10.1111/j.1096-0031.2008.00218.x [Google Scholar]
  67. Warren AD, Ogawa JR, Brower AVZ. (2009) Revised classification of the family Hesperiidae (Lepidoptera: Hesperioidea) based on combined molecular and morphological data. Systematic Entomology 34(3): 467–523. doi: 10.1111/j.1365-3113.2008.00463.x [Google Scholar]
  68. Wesley DJ, Emmel TC. (1975) The chromosomes of Neotropical butterflies from Trinidad and Tobago. Biotropica 7: 24–31. doi: 10.2307/2989796 [Google Scholar]
  69. White MJD. (1973) Animal cytology and evolution. Cambridge, 961 pp. [Google Scholar]

Articles from Comparative Cytogenetics are provided here courtesy of Pensoft Publishers

RESOURCES