Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1976 Jul;10(1):150–156. doi: 10.1128/aac.10.1.150

Phleomycin-Induced Solubilization of Deoxyribonucleic Acid in Uninfected and T Bacteriophage-Infected Escherichia coli B

Karen Shive 1, C F Earhart 1
PMCID: PMC429705  PMID: 791086

Abstract

Phleomycin (PM) induces rapid solubilization of deoxyribonucleic acid (DNA), inhibition of cellular mass increase, and loss of viability when added either to growing cultures of Escherichia coli B or an endonuclease I-defective derivative of B. Nonetheless, bacteriophage of the T-even series are produced, albeit to a reduced extent, when PM is added with phage or after infection to E. coli cells. Bacteriophage T4 infection inhibits the ability of PM to bring about the solubilization of DNA; this effect appears to account for most of the resistance of T-even phage replication to PM. The patterns of inhibition of phage yields obtained when PM is added at infection suggest that glucosylation of T-even phage DNA may also have a protective effect. However, PM induces the solubilization of glucosylated and nonglucosylated DNA at approximately the same rate and thermal denaturation studies indicate that the antibiotic binds both types of DNA equally well. The latter experiments also provided evidence that PM dissociates from DNA at temperatures greater than 80 C.

Full text

PDF
150

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almendinger R., Hager L. P. Role for endonuclease I in the transmission process of colicin E 2 . Nat New Biol. 1972 Feb 16;235(59):199–203. doi: 10.1038/newbio235199a0. [DOI] [PubMed] [Google Scholar]
  2. Barbour S. D., Clark A. J. Biochemical and genetic studies of recombination proficiency in Escherichia coli. I. Enzymatic activity associated with recB+ and recC+ genes. Proc Natl Acad Sci U S A. 1970 Apr;65(4):955–961. doi: 10.1073/pnas.65.4.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chase M, Doermann A H. High Negative Interference over Short Segments of the Genetic Structure of Bacteriophage T4. Genetics. 1958 May;43(3):332–353. doi: 10.1093/genetics/43.3.332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eigner J., Block S. Host-controlled restriction of T-even bacteriophages: relation of four bacterial deoxyribonucleases to restriction. J Virol. 1968 Apr;2(4):320–326. doi: 10.1128/jvi.2.4.320-326.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FALASCHI A., KORNBERG A. ANTIMETABOLITES AFFECTING PROTEIN OR NUCLEIC ACID SYNTHESIS. PHLEOMYCIN, AN INHIBITOR OF DNA POLYMERASE. Fed Proc. 1964 Sep-Oct;23:940–945. [PubMed] [Google Scholar]
  6. FUKASAWA T., JOKURA K., KURAHASHI K. A new enzymic defect of galactose metabolism in Escherichia coli K-12 mutants. Biochem Biophys Res Commun. 1962 Apr 3;7:121–125. doi: 10.1016/0006-291x(62)90158-4. [DOI] [PubMed] [Google Scholar]
  7. Farrell L., Reiter H. Phleomycin-stimulated degradation of deoxyribonucleic acid in Escherichia coli. Antimicrob Agents Chemother. 1973 Sep;4(3):320–326. doi: 10.1128/aac.4.3.320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldberg E. B. The amount of DNA between genetic markers in phage T4. Proc Natl Acad Sci U S A. 1966 Nov;56(5):1457–1463. doi: 10.1073/pnas.56.5.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grigg G. W. Induction of DNA breakdown and death in Escherichia coli by phleomycin. Its association with dark-repair processes. Mol Gen Genet. 1969;104(1):1–11. doi: 10.1007/BF00277357. [DOI] [PubMed] [Google Scholar]
  10. Hewlett M. J., Mathews C. K. Bacteriophage-host interaction and restriction of nonglucosylated T6. J Virol. 1975 Apr;15(4):776–784. doi: 10.1128/jvi.15.4.776-784.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LEHMAN I. R., PRATT E. A. On the structure of the glucosylated hydroxymethylcytosine nucleotides of coliphages T2, T4, and T6. J Biol Chem. 1960 Nov;235:3254–3259. [PubMed] [Google Scholar]
  12. Mattingly E. Induction of chromosome- and chromatid-type aberrations by phleomycin. Mutat Res. 1967 Feb;4(1):51–57. doi: 10.1016/0027-5107(67)90109-1. [DOI] [PubMed] [Google Scholar]
  13. McIntosh M. A., Earhart C. F. Effect of ribonuclease on the association of deoxyribonucleic acid with the membrane in Escherichia coli. J Bacteriol. 1975 May;122(2):592–598. doi: 10.1128/jb.122.2.592-598.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Montgomery D. L., Snyder L. R. A negative effect of -glucosylation on T4 growth in certain RNA polymerase mutants of escherichia coli: genetic evidence implicating pyrimidine-rich sequences of DNA in transcription. Virology. 1973 Jun;53(2):349–358. doi: 10.1016/0042-6822(73)90213-4. [DOI] [PubMed] [Google Scholar]
  15. Nagai K., Yamaki H., Suzuki H., Tanaka N., Umezawa H. The combined effects of bleomycin and sulfhydryl compounds on the thermal denaturation of DNA. Biochim Biophys Acta. 1969 Mar 18;179(1):165–171. doi: 10.1016/0005-2787(69)90132-4. [DOI] [PubMed] [Google Scholar]
  16. Nakayama H. Phileomycin-induced lethality and DNA degradation in Escherichia coli K12. Mutat Res. 1975 Jul;29(1):21–31. doi: 10.1016/0027-5107(75)90018-4. [DOI] [PubMed] [Google Scholar]
  17. Pietsch P. Biopolymers in drug technology: the use of DNA in purifying phleomycin. Biotechnol Bioeng. 1973 Nov;15(6):1039–1044. doi: 10.1002/bit.260150604. [DOI] [PubMed] [Google Scholar]
  18. Pitts J. D., Sinsheimer R. L. Effect of phleomycin upon replication of bacteriophage phiX174. J Mol Biol. 1966 Feb;15(2):676–680. doi: 10.1016/s0022-2836(66)80136-5. [DOI] [PubMed] [Google Scholar]
  19. Post L., Price A. R. Inhibition of bacteriophage PBS2 replication in Bacillus subtilis by phleomycin. J Virol. 1975 Feb;15(2):363–371. doi: 10.1128/jvi.15.2.363-371.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reiter H., Milewskiy M., Kelley P. Mode of action of phleomycin on Bacillus subtilis. J Bacteriol. 1972 Aug;111(2):586–592. doi: 10.1128/jb.111.2.586-592.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SHEDLOVSKY A., BRENNER S. A CHEMICAL BASIS FOR THE HOST-INDUCED MODIFICATION OF T-EVEN BACTERIOPHAGES. Proc Natl Acad Sci U S A. 1963 Aug;50:300–305. doi: 10.1073/pnas.50.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stern R., Rose J. A., Friedman R. M. Phleomycin-induced cleavage of deoxyribonucleic acid. Biochemistry. 1974 Jan 15;13(2):307–312. doi: 10.1021/bi00699a012. [DOI] [PubMed] [Google Scholar]
  23. Streisinger G., Emrich J., Okada Y., Tsugita A., Inouye M. Direction of translation of the lysozyme gene of bacteriophage T4 relative to the linkage map. J Mol Biol. 1968 Feb 14;31(3):607–612. doi: 10.1016/0022-2836(68)90431-2. [DOI] [PubMed] [Google Scholar]
  24. Watanabe M., August J. T. Replication of RNA bacteriophage R23. II. Inhibition of phage-specific RNA synthesis by phleomycin. J Mol Biol. 1968 Apr 14;33(1):21–33. doi: 10.1016/0022-2836(68)90278-7. [DOI] [PubMed] [Google Scholar]
  25. Wood W. B. Host specificity of DNA produced by Escherichia coli: bacterial mutations affecting the restriction and modification of DNA. J Mol Biol. 1966 Mar;16(1):118–133. doi: 10.1016/s0022-2836(66)80267-x. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES