Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Jan 18;91(2):479–483. doi: 10.1073/pnas.91.2.479

Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in Cftr(-/-) mice.

L L Clarke 1, B R Grubb 1, J R Yankaskas 1, C U Cotton 1, A McKenzie 1, R C Boucher 1
PMCID: PMC42972  PMID: 7507247

Abstract

Although loss of cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl- channel function is common to all epithelia in cystic fibrosis (CF) patients, the severity of disease varies in different organs. We hypothesized that differences in disease severity in CF relate to the expression of an "alternative" plasma membrane Cl- conductance. In CF mice [Cftr(-/-); mice homozygous for Ser-489 to Xaa mutation], which do not express cAMP CFTR-mediated Cl- secretion, we surveyed organs that exhibit a range of disease severity for a Ca(2+)-mediated apical membrane epithelial Cl- conductance. This alternative conductance (Cl-a) was detected in epithelia of organs from CF mice that exhibit a mild disease phenotype (airway, pancreas) but not in epithelia with a severe phenotype (small, large intestine). We conclude that (i) there is an intracellular Ca(2+)-regulated Cl- conductance that is molecularly distinct from CFTR; and (ii) the level of expression of this alternative Cl- conductance in the epithelium is an important determinant of the severity of organ-level disease in CF.

Full text

PDF
479

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. P., Gregory R. J., Thompson S., Souza D. W., Paul S., Mulligan R. C., Smith A. E., Welsh M. J. Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science. 1991 Jul 12;253(5016):202–205. doi: 10.1126/science.1712984. [DOI] [PubMed] [Google Scholar]
  2. Anderson M. P., Welsh M. J. Calcium and cAMP activate different chloride channels in the apical membrane of normal and cystic fibrosis epithelia. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6003–6007. doi: 10.1073/pnas.88.14.6003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barasch J., Kiss B., Prince A., Saiman L., Gruenert D., al-Awqati Q. Defective acidification of intracellular organelles in cystic fibrosis. Nature. 1991 Jul 4;352(6330):70–73. doi: 10.1038/352070a0. [DOI] [PubMed] [Google Scholar]
  4. Bear C. E., Li C. H., Kartner N., Bridges R. J., Jensen T. J., Ramjeesingh M., Riordan J. R. Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell. 1992 Feb 21;68(4):809–818. doi: 10.1016/0092-8674(92)90155-6. [DOI] [PubMed] [Google Scholar]
  5. Berschneider H. M., Knowles M. R., Azizkhan R. G., Boucher R. C., Tobey N. A., Orlando R. C., Powell D. W. Altered intestinal chloride transport in cystic fibrosis. FASEB J. 1988 Jul;2(10):2625–2629. doi: 10.1096/fasebj.2.10.2838365. [DOI] [PubMed] [Google Scholar]
  6. Boucher R. C., Cheng E. H., Paradiso A. M., Stutts M. J., Knowles M. R., Earp H. S. Chloride secretory response of cystic fibrosis human airway epithelia. Preservation of calcium but not protein kinase C- and A-dependent mechanisms. J Clin Invest. 1989 Nov;84(5):1424–1431. doi: 10.1172/JCI114316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cartwright C. A., McRoberts J. A., Mandel K. G., Dharmsathaphorn K. Synergistic action of cyclic adenosine monophosphate- and calcium-mediated chloride secretion in a colonic epithelial cell line. J Clin Invest. 1985 Nov;76(5):1837–1842. doi: 10.1172/JCI112176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cheng S. H., Gregory R. J., Marshall J., Paul S., Souza D. W., White G. A., O'Riordan C. R., Smith A. E. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell. 1990 Nov 16;63(4):827–834. doi: 10.1016/0092-8674(90)90148-8. [DOI] [PubMed] [Google Scholar]
  9. Clarke L. L., Boucher R. C. Chloride secretory response to extracellular ATP in human normal and cystic fibrosis nasal epithelia. Am J Physiol. 1992 Aug;263(2 Pt 1):C348–C356. doi: 10.1152/ajpcell.1992.263.2.C348. [DOI] [PubMed] [Google Scholar]
  10. Clarke L. L., Burns K. A., Bayle J. Y., Boucher R. C., Van Scott M. R. Sodium- and chloride-conductive pathways in cultured mouse tracheal epithelium. Am J Physiol. 1992 Nov;263(5 Pt 1):L519–L525. doi: 10.1152/ajplung.1992.263.5.L519. [DOI] [PubMed] [Google Scholar]
  11. Clarke L. L., Grubb B. R., Gabriel S. E., Smithies O., Koller B. H., Boucher R. C. Defective epithelial chloride transport in a gene-targeted mouse model of cystic fibrosis. Science. 1992 Aug 21;257(5073):1125–1128. doi: 10.1126/science.257.5073.1125. [DOI] [PubMed] [Google Scholar]
  12. Devor D. C., Simasko S. M., Duffey M. E. Carbachol induces oscillations of membrane potassium conductance in a colonic cell line, T84. Am J Physiol. 1990 Feb;258(2 Pt 1):C318–C326. doi: 10.1152/ajpcell.1990.258.2.C318. [DOI] [PubMed] [Google Scholar]
  13. Githens S., 3rd, Holmquist D. R., Whelan J. F., Ruby J. R. Ducts of the rat pancreas in a agarose matrix culture. In Vitro. 1980 Sep;16(9):797–808. doi: 10.1007/BF02619315. [DOI] [PubMed] [Google Scholar]
  14. Goldstein J. L., Shapiro A. B., Rao M. C., Layden T. J. In vivo evidence of altered chloride but not potassium secretion in cystic fibrosis rectal mucosa. Gastroenterology. 1991 Oct;101(4):1012–1019. doi: 10.1016/0016-5085(91)90728-4. [DOI] [PubMed] [Google Scholar]
  15. Knowles M. R., Clarke L. L., Boucher R. C. Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis. N Engl J Med. 1991 Aug 22;325(8):533–538. doi: 10.1056/NEJM199108223250802. [DOI] [PubMed] [Google Scholar]
  16. O'Loughlin E. V., Hunt D. M., Gaskin K. J., Stiel D., Bruzuszcak I. M., Martin H. C., Bambach C., Smith R. Abnormal epithelial transport in cystic fibrosis jejunum. Am J Physiol. 1991 May;260(5 Pt 1):G758–G763. doi: 10.1152/ajpgi.1991.260.5.G758. [DOI] [PubMed] [Google Scholar]
  17. Shoshani T., Augarten A., Gazit E., Bashan N., Yahav Y., Rivlin Y., Tal A., Seret H., Yaar L., Kerem E. Association of a nonsense mutation (W1282X), the most common mutation in the Ashkenazi Jewish cystic fibrosis patients in Israel, with presentation of severe disease. Am J Hum Genet. 1992 Jan;50(1):222–228. [PMC free article] [PubMed] [Google Scholar]
  18. Snouwaert J. N., Brigman K. K., Latour A. M., Malouf N. N., Boucher R. C., Smithies O., Koller B. H. An animal model for cystic fibrosis made by gene targeting. Science. 1992 Aug 21;257(5073):1083–1088. doi: 10.1126/science.257.5073.1083. [DOI] [PubMed] [Google Scholar]
  19. Taylor C. J., Baxter P. S., Hardcastle J., Hardcastle P. T. Failure to induce secretion in jejunal biopsies from children with cystic fibrosis. Gut. 1988 Jul;29(7):957–962. doi: 10.1136/gut.29.7.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Willumsen N. J., Boucher R. C. Shunt resistance and ion permeabilities in normal and cystic fibrosis airway epithelia. Am J Physiol. 1989 May;256(5 Pt 1):C1054–C1063. doi: 10.1152/ajpcell.1989.256.5.C1054. [DOI] [PubMed] [Google Scholar]
  21. Willumsen N. J., Davis C. W., Boucher R. C. Intracellular Cl- activity and cellular Cl- pathways in cultured human airway epithelium. Am J Physiol. 1989 May;256(5 Pt 1):C1033–C1044. doi: 10.1152/ajpcell.1989.256.5.C1033. [DOI] [PubMed] [Google Scholar]
  22. de Jonge H. R., van den Berghe N., Tilly B. C., Kansen M., Bijman J. (Dys)regulation of epithelial chloride channels. Biochem Soc Trans. 1989 Oct;17(5):816–818. doi: 10.1042/bst0170816. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES