Abstract
Cultures of tetracycline-treated Staphylococcus aureus exhibited monophasic steady-state growth curves similar to that observed for tetracycline-treated Escherichia coli. Apparent growth rate constants of the respective drug-treated cultures showed the same formal dependence on drug concentration, which was linear at a low concentration but asymptotically approached zero at higher concentration levels and implied the saturation of a limited number of receptor sites engaged in microbial protein synthesis. The relative potency of tetracycline action of S. aureus/E. coli was 6.50:1 at 37.5°C and pH 7.05. This is attributed to relative differences in drug permeation and/or binding affinity for biophase receptors in the respective organisms. It is concluded from kinetic dependencies of growth inhibition of the cultures that tetracycline has the same mode of action on S. aureus and E. coli. It is bacteriostatic at concentrations below the minimal inhibitory concentration level but bactericidal at the higher concentration levels.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BROWN M. R., GARRETT E. R. KINETICS AND MECHANISMS OF ACTION OF ANTIBIOTICS ON MICROORGANISMS. I. REPRODUCIBILITY OF ESCHERICHIA COLI GROWTH CURVES AND DEPENDENCE UPON TETRACYCLINE CONCENTRATION. J Pharm Sci. 1964 Feb;53:179–183. doi: 10.1002/jps.2600530215. [DOI] [PubMed] [Google Scholar]
- Cundliffe E., McQuillen K. Bacterial protein synthesis: the effects of antibiotics. J Mol Biol. 1967 Nov 28;30(1):137–146. doi: 10.1016/0022-2836(67)90249-5. [DOI] [PubMed] [Google Scholar]
- FRANKLIN T. J., GODFREY A. RESISTANCE OF ESCHERICHIA COLI TO TETRACYCLINES. Biochem J. 1965 Jan;94:54–60. doi: 10.1042/bj0940054. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franklin T. J., Higginson B. Active accumulation of tetracycline by Escherichia coli. Biochem J. 1970 Jan;116(2):287–297. doi: 10.1042/bj1160287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franklin T. J. Resistance of Escherichia coli to tetracyclines. Changes in permeability to tetracyclines in Escherichia coli bearing transferable resistance factors. Biochem J. 1967 Oct;105(1):371–378. doi: 10.1042/bj1050371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GARRETT E. R., MILLER G. H. KINETICS AND MECHANISMS OF ACTION OF ANTIBIOTICS ON MICROORGANISMS. 3. INHIBITORY ACTION OF TETRACYCLINE AND CHLORAMPHENICOL ON ESCHERICHIA COLI ESTABLISHED BY TOTAL AND VIABLE COUNTS. J Pharm Sci. 1965 Mar;54:427–431. doi: 10.1002/jps.2600540318. [DOI] [PubMed] [Google Scholar]
- Garrett E. R., Heman-Ackah S. M. Microbial kinetics and dependencies of individual and combined antibiotic inhibitors of protein biosynthesis. Antimicrob Agents Chemother. 1973 Nov;4(5):574–584. doi: 10.1128/aac.4.5.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garrett E. R., Miller G. H., Brown M. R. Kinetics and mechanisms of action of antibiotics on microorganisms. V. Chloramphenicol and tetracycline affected Escherichia coli generation rates. J Pharm Sci. 1966 Jun;55(6):593–600. doi: 10.1002/jps.2600550613. [DOI] [PubMed] [Google Scholar]
- Garrett E. R., Won C. M. Effect of novobiocin and its combination with tetracycline, chloramphenicol, erythromycin, and lincomycin on the microbial generation of Escherichia coli. Antimicrob Agents Chemother. 1973 Dec;4(6):626–633. doi: 10.1128/aac.4.6.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HINSHELWOOD C. Decline and death of bacterial populations. Nature. 1951 Apr 28;167(4252):666–669. doi: 10.1038/167666a0. [DOI] [PubMed] [Google Scholar]
- Heman-Ackah S. M. Microbial kinetics of drug action against gram-positive and gram-negative organisms. I. Effect of lincomycin on Staphylococcus aureus and Escherichia coli. J Pharm Sci. 1974 Jul;63(7):1077–1084. doi: 10.1002/jps.2600630709. [DOI] [PubMed] [Google Scholar]
- Igarashi K., Kaji A. Relationship between sites 1,2 and acceptor, donor sites for the binding of aminoacyl tRNA to ribosomes. Eur J Biochem. 1970 May 1;14(1):41–46. doi: 10.1111/j.1432-1033.1970.tb00258.x. [DOI] [PubMed] [Google Scholar]
- Izaki K., Kiuchi K., Arima K. Specificity and mechanism of tetracycline resistance in a multiple drug resistant strain of Escherichia coli. J Bacteriol. 1966 Feb;91(2):628–633. doi: 10.1128/jb.91.2.628-633.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Last J. A. Studies on the binding of tetracycline to ribosomes. Biochim Biophys Acta. 1969 Dec 16;195(2):506–514. doi: 10.1016/0005-2787(69)90657-1. [DOI] [PubMed] [Google Scholar]
- Maxwell I. H. Studies of the binding of tetracycline to ribosomes in vitro. Mol Pharmacol. 1968 Jan;4(1):25–37. [PubMed] [Google Scholar]
- Miller G. H., Khalil S. A., Martin A. N. Structure-activity relationships of tetracyclines. I. Inhibition of cell division and protein and nucleic acid syntheses in Escherichia coli W. J Pharm Sci. 1971 Jan;60(1):33–40. doi: 10.1002/jps.2600600104. [DOI] [PubMed] [Google Scholar]
- Reynard A. M., Nellis L. F., Beck M. E. Uptake of 3H-Tetracycline by resistant and sensitive Escherichia coli. Appl Microbiol. 1971 Jan;21(1):71–75. doi: 10.1128/am.21.1.71-75.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarkar S., Thach R. E. Inhibition of formylmethionyl-transfer RNA binding to ribosomes by tetracycline. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1479–1486. doi: 10.1073/pnas.60.4.1479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sompolinsky D., Zaidenzaig Y., Ziegler-Schlomowitz R., Abramova N. Mechanism of tetracycline resistance in Staphylococcus aureus. J Gen Microbiol. 1970 Aug;62(3):351–362. doi: 10.1099/00221287-62-3-351. [DOI] [PubMed] [Google Scholar]
- Weisblum B., Davies J. Antibiotic inhibitors of the bacterial ribosome. Bacteriol Rev. 1968 Dec;32(4 Pt 2):493–528. [PMC free article] [PubMed] [Google Scholar]
