Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1976 Aug;10(2):265–273. doi: 10.1128/aac.10.2.265

Nutrition of Bacillus brevis ATCC 9999, the Producer of Gramicidin S1

E J Vandamme a,2, A L Demain a
PMCID: PMC429733  PMID: 62553

Abstract

The nutrition of the gramicidin S (GS) producer Bacillus brevis ATCC 9999 was studied with respect to growth and antibiotic production. In a complex medium containing yeast extract and peptone, only glycerol, d-fructose, and meso-inositol contributed to growth, whereas other hexoses, pentoses, polyols, polysaccharides, and organic acids were inactive. Glycerol and fructose were inhibitory to GS formation; inositol had no effect. In chemically defined media containing a mixture of five amino acids (glutamine, methionine, proline, arginine, and histidine) necessary for good growth, again only glycerol, d-fructose, and meso-inositol served as effective carbon sources for growth. With respect to antibiotic formation, inositol was much poorer than glycerol or fructose. In the presence of glycerol and the five amino acids, addition of 0.1% l-phenylalanine specifically stimulated GS production. Growth kinetics in this defined medium showed two phases: early and rapid growth at the expense of the amino acid mixture, followed by glycerol utilization after a diauxic lag of 2 to 3 h; inositol utilization suffered a much longer lag period. GS formation was initiated after the diauxic lag. Ammonium sulfate was the best individual nitrogen source, but the combination of the five growth-stimulatory amino acids was more potent for GS production. The level of potassium phosphate influenced GS production. High levels stimulated the growth rate but progressively inhibited GS production. Methionine was the best sulfur source. A defined medium (F3/6) that supported rapid exponential growth (μ = 0.53 h−1) followed by progressively slower growth over a 30- to 40-h period was devised containing fructose, six amino acids, and mineral salts. GS formation was initiated as the cells left the exponential growth phase and reached high levels (1,500 mg of GS per liter; 0.19 mg of GS/mg of dry cell weight) after 40 to 50 h of incubation.

Full text

PDF
265

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DEMAIN A. L. Minimal media for quantitative studies with Bacillus subtilis. J Bacteriol. 1958 May;75(5):517–522. doi: 10.1128/jb.75.5.517-522.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Demain A. L. How do antibiotic-producing microorganisms avoid suicide? Ann N Y Acad Sci. 1974 May 10;235(0):601–612. doi: 10.1111/j.1749-6632.1974.tb43294.x. [DOI] [PubMed] [Google Scholar]
  3. Demain A. L., Matteo C. C. Phenylalanine stimulation of gramicidin S formation. Antimicrob Agents Chemother. 1976 Jun;9(6):1000–1003. doi: 10.1128/aac.9.6.1000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. EIKHOM T. S., LALAND S. THE EFFECT OF ACTINOMYCIN D ON THE PRODUCTION OF GRAMICIDIN S IN WHOLE CELLS OF BACILLUS BREVIS. Biochim Biophys Acta. 1965 May 4;100:451–458. doi: 10.1016/0304-4165(65)90015-2. [DOI] [PubMed] [Google Scholar]
  5. Gevers W., Kleinkauf H., Lipmann F. The activation of amino acids for biosynthesis of gramicidin S. Proc Natl Acad Sci U S A. 1968 May;60(1):269–276. doi: 10.1073/pnas.60.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Haavik H. I., Froyshov O. Function of peptide antibiotics in producer organisms. Nature. 1975 Mar 6;254(5495):79–82. doi: 10.1038/254079a0. [DOI] [PubMed] [Google Scholar]
  7. Haavik H. I. Studies on the formation of bacitracin by Bacillus licheniformis: effect of inorganic phosphate. J Gen Microbiol. 1974 Sep;84(1):226–230. doi: 10.1099/00221287-84-1-226. [DOI] [PubMed] [Google Scholar]
  8. Haavik H. I., Thomassen S. A bacitracin-negative mutant of Bacillus licheniformis which is able to sporulate. J Gen Microbiol. 1973 Jun;76(2):451–454. doi: 10.1099/00221287-76-2-451. [DOI] [PubMed] [Google Scholar]
  9. KNIGHT B. C. J. G., PROOM H. A comparative survey of the nutrition and physiology of mesophilic species in the genus Bacillus. J Gen Microbiol. 1950 Sep;4(3):508–538. doi: 10.1099/00221287-4-3-508. [DOI] [PubMed] [Google Scholar]
  10. KORSHUNOV V. V., EGOROV N. S. [A synthetic medium for the development of Bac. brevis var G. B. and production of gramicidin C]. Mikrobiologiia. 1962 May-Jun;31:515–519. [PubMed] [Google Scholar]
  11. Kambe M., Imae Y., Kurahashi K. Biochemical studies on gramicidin S non-producing mutants of Bacillus brevis ATCC 9999. J Biochem. 1974 Mar;75(3):481–493. doi: 10.1093/oxfordjournals.jbchem.a130417. [DOI] [PubMed] [Google Scholar]
  12. Kurahashi K. Biosynthesis of small peptides. Annu Rev Biochem. 1974;43(0):445–459. doi: 10.1146/annurev.bi.43.070174.002305. [DOI] [PubMed] [Google Scholar]
  13. Laland S. G., Zimmer T. L. The protein thiotemplate mechanism of synthesis for the peptide antibiotics produced by Bacillus brevis. Essays Biochem. 1973;9:31–57. [PubMed] [Google Scholar]
  14. Leung D. C., Baxter R. M. Substrate-derived reversible and irreversible inhibitors of the multi-enzyme I of gramicidin S biosynthesis. Biochim Biophys Acta. 1972 Aug 18;279(1):34–47. doi: 10.1016/0304-4165(72)90239-5. [DOI] [PubMed] [Google Scholar]
  15. PROOM H., KNIGHT B. C. The minimal nutritional requirements of some species in the genus Bacillus. J Gen Microbiol. 1955 Dec;13(3):474–480. doi: 10.1099/00221287-13-3-474. [DOI] [PubMed] [Google Scholar]
  16. Sadoff H. L. The antibiotics of Bacillus species: their possible roles in sporulation. Prog Ind Microbiol. 1972;11:1–27. [PubMed] [Google Scholar]
  17. Sarkar N., Paulus H. Function of peptide antibiotics in sporulation. Nat New Biol. 1972 Oct 25;239(95):228–230. doi: 10.1038/newbio239228a0. [DOI] [PubMed] [Google Scholar]
  18. Schaeffer P. Sporulation and the production of antibiotics, exoenzymes, and exotonins. Bacteriol Rev. 1969 Mar;33(1):48–71. doi: 10.1128/br.33.1.48-71.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Udalova T. P., Fedorova R. I. Vliianie razlichnykh pitatel'nykh veshchestv na obrazovanie gramitsidina Bacillus brevis var. G.-B. Mikrobiologiia. 1965 Jul-Aug;34(4):631–635. [PubMed] [Google Scholar]
  20. White P. J. The nutrition of Bacillus megaterium and Bacillus cereus. J Gen Microbiol. 1972 Aug;71(3):505–514. doi: 10.1099/00221287-71-3-505. [DOI] [PubMed] [Google Scholar]
  21. ZHARIKOVA G. G., SILAEV A. B., SUSHKOVA I. V. VLIIANIE NEKOTORYKH ORGANICHESKIKH KISLOT O AMINOKISLOT NA BIOSINTEZ GRAMITSIDINA C. Antibiotiki. 1963 May;8:425–430. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES