Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1976 Nov;10(5):786–794. doi: 10.1128/aac.10.5.786

Effects of Antibiotics on Metabolism of Peptidoglycan, Protein, and Lipids in Bifidobacterium bifidum subsp. pennsylvanicus

G C Molenkamp 1, J H Veerkamp 1
PMCID: PMC429838  PMID: 1008539

Abstract

The formation of cell envelope components of Bifidobacterium bifidum subsp. pennsylvanicus was studied by measuring the incorporation of [3H]glycine, 14C-labeled fatty acids, and N-benzoyl-[14C]glucosamine into the membrane protein, membrane lipids, and cell wall peptidoglycan, respectively. Inhibition of peptidoglycan synthesis by antibiotics (penicillin G, vancomycin, d-cycloserine, and bacitracin) and by the omission of glucosamine-containing growth factors caused a marked decrease in glycine incorporation into cellular as well as membrane protein, which was accompanied by a considerable enhancement of fatty acid incorporation. The uncoupling of protein and lipid synthesis led to the release of marked amounts of lipids from the cell under these conditions. Arrestment of protein synthesis by antibiotics (chloramphenicol, tetracycline, and actinomycin D) decreased peptidoglycan and lipid synthesis only partially, but did not lead to lipid release. Mg2+ deficiency of the medium caused about 60% inhibition of growth and lipid synthesis, but protein synthesis and especially peptidoglycan synthesis were much less inhibited. Staphylococcin 1580 arrested the growth and also the synthesis of protein and peptidoglycan. However, the synthesis and turnover of lipids were considerably increased and a release of large amounts of lipids was observed. Peptidoglycan and cellular protein did not show any turnover either during normal growth or after the inhibition of cell wall and protein synthesis.

Full text

PDF
786

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Bacchus A. N., Javor G. T. Stability of Escherichia coli membrane proteins during chloramphenicol treatment. Antimicrob Agents Chemother. 1975 Sep;8(3):387–389. doi: 10.1128/aac.8.3.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ballesta J. P., Schaechter M. Effect of shift-down and growth inhibition on phospholipid metabolism of Escherichia coli. J Bacteriol. 1971 Jul;107(1):251–258. doi: 10.1128/jb.107.1.251-258.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blumberg P. M., Strominger J. L. Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacteriol Rev. 1974 Sep;38(3):291–335. doi: 10.1128/br.38.3.291-335.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cadieux G., Côté J. R., Mathieu L. G. Microscopic observation of cell-wall modifications in Staphylococcus aureus cells treated with chloramphenicol or phenethyl alcohol. Rev Can Biol. 1970 Sep;29(3):219–225. [PubMed] [Google Scholar]
  6. Card G. L. Metabolism of phosphatidylglycerol, phosphatidylethanolamine, and cardiolipin of Bacillus stearothermophilus. J Bacteriol. 1973 Jun;114(3):1125–1137. doi: 10.1128/jb.114.3.1125-1137.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chung K. L. Thickened cell walls of Bacillus cereus grown in the presence of chloramphenicol: their fate during cell growth. Can J Microbiol. 1971 Dec;17(12):1561–1565. doi: 10.1139/m71-249. [DOI] [PubMed] [Google Scholar]
  8. Cronan J. E., Jr A rapid method for the estimation of bacterial fatty acid biosynthesis. Anal Biochem. 1967 Nov;21(2):293–297. doi: 10.1016/0003-2697(67)90192-3. [DOI] [PubMed] [Google Scholar]
  9. Cronan J. E., Vagelos P. R. Metabolism and function of the membrane phospholipids of Escherichia coli. Biochim Biophys Acta. 1972 Feb 14;265(1):25–60. doi: 10.1016/0304-4157(72)90018-4. [DOI] [PubMed] [Google Scholar]
  10. Crowfoot P. D., Esfahani M., Wakil S. J. Relation between protein synthesis and phospholipid synthesis and turnover in Escherichia coli. J Bacteriol. 1972 Dec;112(3):1408–1415. doi: 10.1128/jb.112.3.1408-1415.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Crowfoot P. D., Oka T., Esfahani M., Wakil S. J. Turnover of phospholipids in an unsaturated fatty acid auxotroph of Escherichia coli. J Bacteriol. 1972 Dec;112(3):1396–1407. doi: 10.1128/jb.112.3.1396-1407.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Exterkate F. A., Otten B. J., Wassenberg H. W., Veerkamp J. H. Comparison of the phospholipid composition of Bifidobacterium and Lactobacillus strains. J Bacteriol. 1971 Jun;106(3):824–829. doi: 10.1128/jb.106.3.824-829.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Exterkate F. A., Veerkamp J. H. Biochemical changes in Bifidobacterium bifidum var. Pennsylvanicus after cell wall inhibition. I. Composition of lipids. Biochim Biophys Acta. 1969 Jan 21;176(1):65–77. doi: 10.1016/0005-2760(69)90075-7. [DOI] [PubMed] [Google Scholar]
  14. Exterkate F. A., Veerkamp J. H. Biochemical changes in Bifidobacterium bifidum var. pennsylvanicus after cell wall inhibition. IV. Galactolipid composition. Biochim Biophys Acta. 1971 May 4;231(3):545–549. doi: 10.1016/0005-2760(71)90124-x. [DOI] [PubMed] [Google Scholar]
  15. Exterkate F. A., Vrensen G. F., Veerkamp J. H. Biochemical changes in Bifidobacterium bifidum var. Pennsylvanicus after cell wall inhibition. 3. Morphological structure and osmotic properties of the protoplasts and membrane composition. Biochim Biophys Acta. 1970;219(1):141–154. doi: 10.1016/0005-2736(70)90069-6. [DOI] [PubMed] [Google Scholar]
  16. Frehel C., Beaufils A. M., Ryter A. Etude au microscope électronique de la croissance de la paroi chez B. subtilis et B. megaterium. Ann Inst Pasteur (Paris) 1971 Aug;121(2):139–148. [PubMed] [Google Scholar]
  17. GYORGY P., NORRIS R. F., ROSE C. S. Bifidus factor. I. A variant of Lactobacillus bifidus requiring a special growth factor. Arch Biochem Biophys. 1954 Jan;48(1):193–201. doi: 10.1016/0003-9861(54)90323-9. [DOI] [PubMed] [Google Scholar]
  18. Giesbrecht P., Ruska H. Uber Veränderungen der Feinstrukturen von Bakterien unter der Einwirkung von Chloramphenicol. Klin Wochenschr. 1968 Jun 1;46(11):575–582. doi: 10.1007/BF01747836. [DOI] [PubMed] [Google Scholar]
  19. Glenn A. R., Gould A. R. Inhibition of lipid synthesis in Bacillus amyloliquefaciens by inhibitors of protein synthesis. Biochem Biophys Res Commun. 1973 May 15;52(2):356–364. doi: 10.1016/0006-291x(73)90719-5. [DOI] [PubMed] [Google Scholar]
  20. Günther T., Richter L., Schmalbeck J. Phospholipids of Escherichia coli in magnesium deficiency. J Gen Microbiol. 1975 Jan;86(1):191–193. doi: 10.1099/00221287-86-1-191. [DOI] [PubMed] [Google Scholar]
  21. Hash J. H., Davies M. C. Electron Microscopy of Staphylococcus aureus Treated with Tetracycline. Science. 1962 Nov 16;138(3542):828–829. doi: 10.1126/science.138.3542.828. [DOI] [PubMed] [Google Scholar]
  22. Henning U. L. Determination of cell shape in bacteria. Annu Rev Microbiol. 1975;29:45–60. doi: 10.1146/annurev.mi.29.100175.000401. [DOI] [PubMed] [Google Scholar]
  23. Higgins M. L., Daneo-Moore L., Boothby D., Shockman G. D. Effect of inhibition of deoxyribonucleic acid and protein synthesis on the direction of cell wall growth in Streptococcus faecalis. J Bacteriol. 1974 May;118(2):681–692. doi: 10.1128/jb.118.2.681-692.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Higgins M. L., Daneo-Moore L. Morphokinetic reaction of cells of Streptococcus faecalis (ATCC 9790) to specific inhibition of macromolecular synthesis: dependence of mesosome growth on deoxyribonucleic acid synthesis. J Bacteriol. 1972 Mar;109(3):1221–1231. doi: 10.1128/jb.109.3.1221-1231.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Higgins M. L., Shockman G. D. Early changes in the ultrastructure of Streptococcus faecalis after amino acid starvation. J Bacteriol. 1970 Jul;103(1):244–253. doi: 10.1128/jb.103.1.244-253.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Higgins M. L., Shockman G. D. Procaryotic cell division with respect to wall and membranes. CRC Crit Rev Microbiol. 1971 May;1(1):29–72. doi: 10.3109/10408417109104477. [DOI] [PubMed] [Google Scholar]
  27. Hughes R. C., Tanner P. J., Stokes E. Cell-wall thickening in Bacillus subtilis. Comparison of thickened and normal walls. Biochem J. 1970 Nov;120(1):159–170. doi: 10.1042/bj1200159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jetten A. M., Vogels G. D. Effects of colicin A and staphylococcin 1580 on amino acid uptake into membrane vesicles of Escherichia coli and staphylococcus aureus. Biochim Biophys Acta. 1973 Jul 18;311(4):483–495. doi: 10.1016/0005-2736(73)90124-7. [DOI] [PubMed] [Google Scholar]
  29. Jetten A. M., Vogels G. D. Mode of action of a Staphylococcus epidermidis bacteriocin. Antimicrob Agents Chemother. 1972 Dec;2(6):456–463. doi: 10.1128/aac.2.6.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Jetten A. M., Vogels G. D. Nature and properties of a Staphylococcus epidermidis bacteriocin. J Bacteriol. 1972 Oct;112(1):243–250. doi: 10.1128/jb.112.1.243-250.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Jetten A. M., Vogels G. D., de Windt F. Production and purification of a Staphylococcus epidermidis bacteriocin. J Bacteriol. 1972 Oct;112(1):235–242. doi: 10.1128/jb.112.1.235-242.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kahane I., Razin S. Synthesis and turnover of membrane protein and lipid in Mycoplasma laidlawii. Biochim Biophys Acta. 1969 Jun 3;183(1):79–89. doi: 10.1016/0005-2736(69)90131-x. [DOI] [PubMed] [Google Scholar]
  33. Kennell D., Kotoulas A. Magnesium starvation of Aerobacter aerogenes. I. Changes in nucleic acid composition. J Bacteriol. 1967 Jan;93(1):334–344. doi: 10.1128/jb.93.1.334-344.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kitanaka E., Ochiai K., Hamasu Y., Nakao M., Nakazawa S. Cell wall synthesis by Staphylococcus aureus in the presence of protein synthesis inhibitory agents. 3. Biochemical study. J Antibiot (Tokyo) 1972 Nov;25(11):679–680. doi: 10.7164/antibiotics.25.679. [DOI] [PubMed] [Google Scholar]
  35. Knox K. W., Cullen J., Work E. An extracellular lipopolysaccharide-phospholipid-protein complex produced by Escherichia coli grown under lysine-limiting conditions. Biochem J. 1967 Apr;103(1):192–201. doi: 10.1042/bj1030192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. LAMBERT R., SAITO Y., VEERKAMP J. H. INCORPORATION OF LABELED DERIVATIVES OF 2-DEOXY-2-AMINO-D-GLUCOSE INTO THE CELL WALLS OF LACTOBACILLUS BIFIDUS VAR. PENNSYLVANICUS. Arch Biochem Biophys. 1965 May;110:341–345. doi: 10.1016/0003-9861(65)90130-x. [DOI] [PubMed] [Google Scholar]
  37. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  38. Lambert R., Zilliken F. Novel growth factors for Lactobacillus bifidus var pennsylvanicus. Arch Biochem Biophys. 1965 Jun;110(3):544–550. doi: 10.1016/0003-9861(65)90448-0. [DOI] [PubMed] [Google Scholar]
  39. Lutsch G., Venker P. Intracytoplasmatische Membranen in E. coli nach Magnesium- bzw. Phosphat-Mangel. Naturwissenschaften. 1969 Nov;56(11):568–568. doi: 10.1007/BF00597280. [DOI] [PubMed] [Google Scholar]
  40. Machtiger N. A., Fox C. F. Biochemistry of bacterial membranes. Annu Rev Biochem. 1973;42:575–600. doi: 10.1146/annurev.bi.42.070173.003043. [DOI] [PubMed] [Google Scholar]
  41. Marchesi S. L., Kennell D. Magnesium starvation of Aerobacter aerogenes. 3. Protein metabolism. J Bacteriol. 1967 Jan;93(1):357–366. doi: 10.1128/jb.93.1.357-366.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Mendoza C. G., Ledieu M. N. Membrane protein synthesis in Micrococcus lysodeikticus and selective effect of chloramphenicol. Can J Biochem. 1975 May;53(5):615–622. doi: 10.1139/o75-083. [DOI] [PubMed] [Google Scholar]
  43. Mindich L. Membrane synthesis in Bacillus subtilis. II. Integration of membrane proteins in the absence of lipid synthesis. J Mol Biol. 1970 Apr 28;49(2):433–439. doi: 10.1016/0022-2836(70)90255-x. [DOI] [PubMed] [Google Scholar]
  44. Nakao M., Kitanaka E., Ochiai K., Nakazawa S. Cell wall synthesis in Staphylococcus aureus in the presence of protein synthesis inhibitory agents. I. Lincomycin, clindamycin and macrolide antibiotics. Jpn J Microbiol. 1972 Sep;16(5):403–413. doi: 10.1111/j.1348-0421.1972.tb00675.x. [DOI] [PubMed] [Google Scholar]
  45. Nunn W. D., Tropp B. E. Effects of phenethyl alcohol on phospholipid metabolism in Escherichia coli. J Bacteriol. 1972 Jan;109(1):162–168. doi: 10.1128/jb.109.1.162-168.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Okawa I., Maruo B., Kageyama M. Preferential inhibition of lipid synthesis by the bacteriocin pyocin S2. J Biochem. 1975 Jul;78(1):213–223. [PubMed] [Google Scholar]
  47. Ono Y., White D. C. Consequences of the inhibition of cardiolipin metabolism in Haemophilus parainfluenzae. J Bacteriol. 1971 Dec;108(3):1065–1071. doi: 10.1128/jb.108.3.1065-1071.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. PARK J. T., HANCOCK R. A fractionation procedure for studies of the synthesis of cell-wall mucopeptide and of other polymers in cells of Staphylococcus aureus. J Gen Microbiol. 1960 Feb;22:249–258. doi: 10.1099/00221287-22-1-249. [DOI] [PubMed] [Google Scholar]
  49. Rogers H. J. Bacterial growth and the cell envelope. Bacteriol Rev. 1970 Jun;34(2):194–214. doi: 10.1128/br.34.2.194-214.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Rothfield L., Pearlman-Kothencz M. Synthesis and assembly of bacterial membrane components. A lipopolysaccharide-phospholipid-protein complex excreted by living bacteria. J Mol Biol. 1969 Sep 28;44(3):477–492. doi: 10.1016/0022-2836(69)90374-x. [DOI] [PubMed] [Google Scholar]
  51. Schmidt G. B., Rosano C. L., Hurwitz C. Evidence for a magnesium pump in Bacillus cereus T. J Bacteriol. 1971 Jan;105(1):150–155. doi: 10.1128/jb.105.1.150-155.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Shockman G. D., Daneo-Moore L., Higgins M. L. Problems of cell wall and membrane growth, enlargement, and division. Ann N Y Acad Sci. 1974 May 10;235(0):161–197. doi: 10.1111/j.1749-6632.1974.tb43265.x. [DOI] [PubMed] [Google Scholar]
  53. Shockman G. D. Symposium on the fine structure and replication of bacteria and their parts. IV. Unbalanced cell-wall synthesis: autolysis and cell-wall thickening. Bacteriol Rev. 1965 Sep;29(3):345–358. doi: 10.1128/br.29.3.345-358.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Siewert G., Strominger J. L. Bacitracin: an inhibitor of the dephosphorylation of lipid pyrophosphate, an intermediate in the biosynthesis of the peptidoglycan of bacterial cell walls. Proc Natl Acad Sci U S A. 1967 Mar;57(3):767–773. doi: 10.1073/pnas.57.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Sokawa Y., Nakao E., Kaziro Y. On the nature of the control by RC gene in e. coli: amino acid-dependent control of lipid synthesis. Biochem Biophys Res Commun. 1968 Oct 10;33(1):108–112. doi: 10.1016/0006-291x(68)90263-5. [DOI] [PubMed] [Google Scholar]
  56. Strominger J. L. The actions of penicillin and other antibiotics on bacterial cell wall synthesis. Johns Hopkins Med J. 1973 Aug;133(2):63–81. [PubMed] [Google Scholar]
  57. Vambutas V. K., Salton M. R. Incorporation of [14C]glycine into Micrococcus lysodeikticus membrane protein and effects of protein synthesis inhibitors. Biochim Biophys Acta. 1970 Mar 17;203(1):83–93. doi: 10.1016/0005-2736(70)90038-6. [DOI] [PubMed] [Google Scholar]
  58. Van Schaik F. W., Veerkamp J. H. Biochemical changes in Bifidobacterium bifidum var. pennsylvanicus after cell wall inhibition. VIII. Composition and metabolism of phospholipids at different stages and conditions of growth. Biochim Biophys Acta. 1975 May 22;388(2):213–225. [PubMed] [Google Scholar]
  59. Veerkamp J. H. Biochemical changes in Bifidobacterium bifidum var. Pennsylvanicus after cell wall inhibition. II. Fatty acid composition. Biochim Biophys Acta. 1970 Jul 14;210(2):267–275. doi: 10.1016/0005-2760(70)90171-2. [DOI] [PubMed] [Google Scholar]
  60. Veerkamp J. H. The structure of the cell wall peptidoglycan of Bifidobacterium bifidum var. pennsylvanicus. Arch Biochem Biophys. 1971 Mar;143(1):204–211. doi: 10.1016/0003-9861(71)90200-1. [DOI] [PubMed] [Google Scholar]
  61. Wong W., Young F. E., Chatterjee A. N. Regulation of bacterial cell walls: turnover of cell wall in Staphylococcus aureus. J Bacteriol. 1974 Nov;120(2):837–843. doi: 10.1128/jb.120.2.837-843.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Zusman D. R. Membrane protein synthesis in Escherichia coli: sensitivity to chloramphenicol. Arch Biochem Biophys. 1973 Nov;159(1):336–341. doi: 10.1016/0003-9861(73)90459-1. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES