Abstract
The effect of N-alkyl derivatives of saturated heterocyclic amine oxides on the growth and metabolism of microorganisms has been studied. 4-Dodecylmorpholine-N-oxide inhibited the differentiation and growth of Bacillus cereus, of different species of filamentous fungi, and of the yeast Saccharomyces cerevisiae. For vegetative cells, the effect of 4-dodecylmorpholine-N-oxide was lethal. Cells of S. cerevisiae, after interaction with 4-dodecylmorpholine-N-oxide, released intracellular K+ and were unable to oxidize or ferment glucose. The functions of isolated yeast mitochondria were also impaired. 4-Dodecylmorpholine-N-oxide at growth-inhibiting concentrations induced rapid lysis of osmotically stabilized yeast protoplasts, with the rate of lysis a function of temperature and of amine oxide concentration. A study of the relationships between structure, antimicrobial activity, and cytolytic activity was made with a group of structurally different amine oxides involving a series of homologous 4-alkylmorpholine-N-oxides, 1-alkylpiperidine-N-oxides, 1-dodecylpyrrolidine-N-oxide, 1-dodecylperhydroasepine-N-oxide, and N,N-dimethyldodecylamine oxide. Disorganization of the membrane structure after interaction of cells with the tested amine oxides was primarily responsible for the antimicrobial activity of the amine oxides. This activity was found to be dependent on the chain length of the hydrophobic alkyl group and was only moderately influenced by other substituents of the polarized N-oxide group.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRADLEY L. B., JACOB M., JACOBS E. E., SANADI D. R. Uncoupling of oxidative phosphorylation by cadmium ion. J Biol Chem. 1956 Nov;223(1):147–156. [PubMed] [Google Scholar]
- Bickel M. H. The pharmacology and biochemistry of N-oxides. Pharmacol Rev. 1969 Dec;21(4):325–355. [PubMed] [Google Scholar]
- Dechezlepretre S., Portet R., Cheymol J. Toxicités comparées de la triméthylamine (TMA), de son oxyde le triméthylaminoxyde (TMAO), et de leur association. Med Pharmacol Exp Int J Exp Med. 1967;16(6):529–535. [PubMed] [Google Scholar]
- Helenius A., Simons K. Solubilization of membranes by detergents. Biochim Biophys Acta. 1975 Mar 25;415(1):29–79. doi: 10.1016/0304-4157(75)90016-7. [DOI] [PubMed] [Google Scholar]
- Kovac L., Groot G. S., Racker E. Translocation of protons and potassium ions across the mitochondrial membrane of respiring and respiration-deficient yeasts. Biochim Biophys Acta. 1972 Jan 21;256(1):55–65. doi: 10.1016/0005-2728(72)90162-4. [DOI] [PubMed] [Google Scholar]
- Liras P., Lampen J. O. Sequence of candicidin action on yeast cells. Biochim Biophys Acta. 1974 Nov 4;372(1):141–153. doi: 10.1016/0304-4165(74)90081-6. [DOI] [PubMed] [Google Scholar]
- OGUR M., ST. JOHN R., NAGAI S. Tetrazolium overlay technique for population studies of respiration deficiency in yeast. Science. 1957 May 10;125(3254):928–929. doi: 10.1126/science.125.3254.928. [DOI] [PubMed] [Google Scholar]
- Subík J., Kuzela S., Kolarov J., Kovác L., Lachowicz T. M. Oxidative phosphorylation in yeast. VI. ATPase activity and protein synthesis in mitochondria isolated from nuclear mutants deficient in cytochromes. Biochim Biophys Acta. 1970 Jun 30;205(3):513–519. doi: 10.1016/0005-2728(70)90117-9. [DOI] [PubMed] [Google Scholar]
- Sumner J. B. A METHOD FOR THE COLORIMETRIC DETERMINATION OF PHOSPHORUS. Science. 1944 Nov 3;100(2601):413–414. doi: 10.1126/science.100.2601.413. [DOI] [PubMed] [Google Scholar]