Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Jan 18;91(2):704–708. doi: 10.1073/pnas.91.2.704

Identification of histidine at the catalytic site of the photosynthetic oxygen-evolving complex.

X S Tang 1, B A Diner 1, B S Larsen 1, M L Gilchrist Jr 1, G A Lorigan 1, R D Britt 1
PMCID: PMC43017  PMID: 8290585

Abstract

The molecular oxygen in our atmosphere is a product of a water-splitting reaction that occurs in the oxygen-evolving complex of photosystem II of oxygenic photosynthesis. The catalytic core of the oxygen-evolving complex is an ensemble of four manganese atoms arranged in a cluster of undetermined structure. The pulsed electron paramagnetic resonance (EPR) technique of electron spin-echo envelope modulation (ESEEM) can be used to measure nuclear spin transitions of nuclei magnetically coupled to paramagnetic metal centers of enzymes. We report the results of ESEEM experiments on the cyanobacterium Synechocystis PCC 6803 selectively labeled with 15N at the two nitrogen sites of the imidazole side chain of histidine residues. The experiments demonstrate that histidine is bound to manganese in the oxygen-evolving complex.

Full text

PDF
704

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bidlingmeyer B. A., Cohen S. A., Tarvin T. L. Rapid analysis of amino acids using pre-column derivatization. J Chromatogr. 1984 Dec 7;336(1):93–104. doi: 10.1016/s0378-4347(00)85133-6. [DOI] [PubMed] [Google Scholar]
  2. DeRose V. J., Yachandra V. K., McDermott A. E., Britt R. D., Sauer K., Klein M. P. Nitrogen ligation to manganese in the photosynthetic oxygen-evolving complex: continuous-wave and pulsed EPR studies of photosystem II particles containing 14N or 15N. Biochemistry. 1991 Feb 5;30(5):1335–1341. doi: 10.1021/bi00219a025. [DOI] [PubMed] [Google Scholar]
  3. Debus R. J. The manganese and calcium ions of photosynthetic oxygen evolution. Biochim Biophys Acta. 1992 Oct 16;1102(3):269–352. doi: 10.1016/0005-2728(92)90133-m. [DOI] [PubMed] [Google Scholar]
  4. Dismukes G. C., Siderer Y. Intermediates of a polynuclear manganese center involved in photosynthetic oxidation of water. Proc Natl Acad Sci U S A. 1981 Jan;78(1):274–278. doi: 10.1073/pnas.78.1.274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gimenez-Gallego G., Thomas K. A. High-performance liquid chromatography of phenylthiocarbamyl-amino acids. Application to carboxyl-terminal sequencing of proteins. J Chromatogr. 1987 Nov 13;409:299–304. doi: 10.1016/s0021-9673(01)86806-0. [DOI] [PubMed] [Google Scholar]
  6. Labarre J., Thuriaux P., Chauvat F. Genetic analysis of amino acid transport in the facultatively heterotrophic cyanobacterium Synechocystis sp. strain 6803. J Bacteriol. 1987 Oct;169(10):4668–4673. doi: 10.1128/jb.169.10.4668-4673.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rappaport F., Lavergne J. Proton release during successive oxidation steps of the photosynthetic water oxidation process: stoichiometries and pH dependence. Biochemistry. 1991 Oct 15;30(41):10004–10012. doi: 10.1021/bi00105a027. [DOI] [PubMed] [Google Scholar]
  8. Tainer J. A., Getzoff E. D., Richardson J. S., Richardson D. C. Structure and mechanism of copper, zinc superoxide dismutase. Nature. 1983 Nov 17;306(5940):284–287. doi: 10.1038/306284a0. [DOI] [PubMed] [Google Scholar]
  9. Zimmermann J. L., Boussac A., Rutherford A. W. The manganese center of oxygen-evolving and Ca(2+)-depleted photosystem II: a pulsed EPR spectroscopy study. Biochemistry. 1993 May 11;32(18):4831–4841. doi: 10.1021/bi00069a019. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES