Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Apr;73(4):1019–1023. doi: 10.1073/pnas.73.4.1019

Distribution of 5-bromodeoxyuridine and thymidine in the DNA of developing chick cartilage.

C M Strom, A Dorfman
PMCID: PMC430191  PMID: 1063387

Abstract

In order to study the mechanism of the irreversible effects of BrdUrd on the differentiation of limb bud mesenchyme to cartilage, the reannealing behavior of DNA obtained from such cells was examined. Cells incubated with [3H]thymidine ([3H]dThd) during days 1 and 2 of culture incorporated label into repetitive, moderately repetitive, and unique classes of DNA. In contrast, when 5-bromo-2'-[3H]deoxyuridine ([3H]Brd Urd) was added during the first 48 hr (in the presence of 32 muM BrdUrd), the label was preferentially incorporated into a late moderately repetitive region. Simultaneous incubation of unlabeled BrdUrd and [3H]dThd revealed a selective inhibition of [3H]dThd incorporation into moderately repetitive regions. Cultures incubated during days 3 and 4 with [3H]dThd incorporated label into all three classes of DNA; however, when [3H]dThd was present during days 3 and 4 in cultures previously incubated with BrdUrd during days 1 and 2, the [3H]dThd was incorporated preferentially in the late moderately repetitive region. The melting behavior of this reannealed DNA was identical with that of the reannealed 1-2 day [3H]BrdUrd-labeled, late moderately repetitive DNA. Turnover experiments revealed that whereas there was no loss of [3H]deoxycytidine or [3H]dThd, 37% of [3H]BrdUrd activity was lost from the DNA in 2 days after removal of the isotopes.

Full text

PDF
1019

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott J., Holtzer H. The loss of phenotypic traits by differentiated cells, V. The effect of 5-bromodeoxyuridine on cloned chondrocytes. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1144–1151. doi: 10.1073/pnas.59.4.1144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bischoff R. Acid mucopolysaccharide synthesis by chick amnion cell cultures. Inhibition by 5-bromodeoxyuridine. Exp Cell Res. 1971 May;66(1):224–236. doi: 10.1016/s0014-4827(71)80032-0. [DOI] [PubMed] [Google Scholar]
  3. Bonner J., Wu J. R. A proposal for the structure of the Drosophila genome. Proc Natl Acad Sci U S A. 1973 Feb;70(2):535–537. doi: 10.1073/pnas.70.2.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Britten R. J., Davidson E. H. Gene regulation for higher cells: a theory. Science. 1969 Jul 25;165(3891):349–357. doi: 10.1126/science.165.3891.349. [DOI] [PubMed] [Google Scholar]
  5. Britten R. J., Kohne D. E. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science. 1968 Aug 9;161(3841):529–540. doi: 10.1126/science.161.3841.529. [DOI] [PubMed] [Google Scholar]
  6. Coleman A. W., Coleman J. R., Kankel D., Werner I. The reversible control of animal cell differentiation by the thymidine analog, 5-bromodeoxyuridine. Exp Cell Res. 1970 Feb;59(2):319–328. doi: 10.1016/0014-4827(70)90606-3. [DOI] [PubMed] [Google Scholar]
  7. Coleman J. R., Coleman A. W., Hartline E. J. A clonal study of the reversible inhibition of muscle differentiation by the halogenated thymidine analog 5-bromodeoxyuridine. Dev Biol. 1969 Jun;19(6):527–548. doi: 10.1016/0012-1606(69)90036-0. [DOI] [PubMed] [Google Scholar]
  8. Gilmour R. S., Windass J. D., Affara N., Paul J. Control of transcription of the globin gene. J Cell Physiol. 1975 Apr;85(2 Pt 2 Suppl 1):449–458. doi: 10.1002/jcp.1040850411. [DOI] [PubMed] [Google Scholar]
  9. Gontcharoff M., Mazia D. Developmental consequences of introduction of bromouracil into the DNA of sea urchin embryos during early division stages. Exp Cell Res. 1967 May;46(2):315–327. doi: 10.1016/0014-4827(67)90069-9. [DOI] [PubMed] [Google Scholar]
  10. Gordon P., Casey J., Rabinowitz M. Characterization of mitochondrial deoxyribonucleic acid from a series of petite yeast strains by deoxyribonucleic acid-deoxyribonucleic acid hybridization. Biochemistry. 1974 Mar 12;13(6):1067–1075. doi: 10.1021/bi00703a002. [DOI] [PubMed] [Google Scholar]
  11. KIRBY K. S. The preparation of deoxyribonucleic acids by the p-aminosalicylate-phenol method. Biochim Biophys Acta. 1959 Nov;36:117–124. doi: 10.1016/0006-3002(59)90075-7. [DOI] [PubMed] [Google Scholar]
  12. Laird C. D., McConaughy B. L., McCarthy B. J. Rate of fixation of nucleotide substitutions in evolution. Nature. 1969 Oct 11;224(5215):149–154. doi: 10.1038/224149a0. [DOI] [PubMed] [Google Scholar]
  13. Levitt D., Dorfman A. Control of chondrogenesis in limb-bud cell cultures by bromodeoxyuridine. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2201–2205. doi: 10.1073/pnas.70.8.2201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Levitt D., Dorfman A. The irreversible inhibition of differentiation of limb-bud mesenchyme by bromodeoxyuridine. Proc Natl Acad Sci U S A. 1972 May;69(5):1253–1257. doi: 10.1073/pnas.69.5.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
  16. Mayne R., Abbott J., Holtzer H. Requirement for cell proliferation for the effects of 5-bromo-2'-deoxyuridine on cultures of chick chondrocytes. Exp Cell Res. 1973 Mar 15;77(1):255–263. doi: 10.1016/0014-4827(73)90575-2. [DOI] [PubMed] [Google Scholar]
  17. Mayne R., Sanger J. W., Holtzer H. Inhibition of mucopolysaccharide synthesis by 5-bromodeoxyuridine in cultures of chick amnion cells. Dev Biol. 1971 Aug;25(4):547–567. doi: 10.1016/0012-1606(71)90005-4. [DOI] [PubMed] [Google Scholar]
  18. Paul J. General theory of chromosome structure and gene activation in eukaryotes. Nature. 1972 Aug 25;238(5365):444–446. doi: 10.1038/238444a0. [DOI] [PubMed] [Google Scholar]
  19. Schwartz S. A., Kirsten W. H. Distribution of 5-bromodeoxyuridine in the DNA of rat embryo cells. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3570–3574. doi: 10.1073/pnas.71.9.3570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schwartz S. A. Localization of 5-bromodeoxyuridine distribution in rat DNA as determined by single-strand specific nucleases. Biochem Biophys Res Commun. 1975 Aug 4;65(3):1081–1087. doi: 10.1016/s0006-291x(75)80496-7. [DOI] [PubMed] [Google Scholar]
  21. Silagi S., Bruce S. A. Suppression of malignancy and differentiation in melanotic melanoma cells. Proc Natl Acad Sci U S A. 1970 May;66(1):72–78. doi: 10.1073/pnas.66.1.72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stein G. S., Stein J. S., Kleinsmith L. J. Chromosomal proteins and gene regulation. Sci Am. 1975 Feb;232(2):46–57. doi: 10.1038/scientificamerican0275-46. [DOI] [PubMed] [Google Scholar]
  23. Turkington R. W., Majumder G. C., Riddle M. Inhibition of mammary gland differentiation in vitro by 5-bromo-2'-deoxyuridine. J Biol Chem. 1971 Mar 25;246(6):1814–1819. [PubMed] [Google Scholar]
  24. Walther B. T., Pictet R. L., David J. D., Rutter W. J. On the mechanism of 5-bromodeoxyuridine inhibition of exocrine pancreas differentiation. J Biol Chem. 1974 Mar 25;249(6):1953–1964. [PubMed] [Google Scholar]
  25. de Jiménez E. S., González J. L., Domínguez J. L., Saloma E. S. Characterization of DNA from differentiated cells. Analysis of the chicken genomic complexity. Eur J Biochem. 1974 Jun 1;45(1):25–29. doi: 10.1111/j.1432-1033.1974.tb03525.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES