Abstract
At intron 40 of the von Willebrand factor (vWF) gene, two GATA-repeat polymorphic sites exist that are physically separated by 212 bp. At the first site (vWF1 locus), seven segregating repeat alleles were observed in a Brazilian Caucasian population, and at the second (vWF2 locus) there were eight alleles, detected through PCR amplifications of this DNA region. Haplotype analysis of individuals revealed 36 different haplotypes in a sample of 338 chromosomes examined. Allele frequencies between generations and gender at each locus were not significantly different, and the genotype frequencies were consistent with their Hardy-Weinberg expectations. Linkage disequilibrium between loci is highly significant with positive allele size association; that is, large alleles at the loci tend to occur together, and so do the small alleles. Variability at each locus appeared to have arisen in a stepwise fashion, suggesting replication slippage as a possible mechanism of production of new alleles. However, we observed an increased number of haplotypes, in contrast with the predictions of a stepwise production of variation in the entire region, suggesting some form of "cooperative" changes between loci that could be due to either gene conversion, or a common control mechanism of production of new variation at these repeat polymorphism sites. The high degree of polymorphism (gene diversity values of 72% and 78% at vWF1 and vWF2, respectively, and of 93% at the haplotype level) makes these markers informative for paternity testing, genetic counseling, and individual-identification purposes.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chakraborty R. Genetic profile of cosmopolitan populations: effects of hidden subdivision. Anthropol Anz. 1990;48(4):313–331. [PubMed] [Google Scholar]
- Chakraborty R., Weiss K. M. Genetic variation of the mitochondrial DNA genome in American Indians is at mutation-drift equilibrium. Am J Phys Anthropol. 1991 Dec;86(4):497–506. doi: 10.1002/ajpa.1330860405. [DOI] [PubMed] [Google Scholar]
- Deka R., Chakroborty R., Ferrell R. E. A population genetic study of six VNTR loci in three ethnically defined populations. Genomics. 1991 Sep;11(1):83–92. doi: 10.1016/0888-7543(91)90104-m. [DOI] [PubMed] [Google Scholar]
- Edwards A., Hammond H. A., Jin L., Caskey C. T., Chakraborty R. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics. 1992 Feb;12(2):241–253. doi: 10.1016/0888-7543(92)90371-x. [DOI] [PubMed] [Google Scholar]
- Epplen J. T., McCarrey J. R., Sutou S., Ohno S. Base sequence of a cloned snake W-chromosome DNA fragment and identification of a male-specific putative mRNA in the mouse. Proc Natl Acad Sci U S A. 1982 Jun;79(12):3798–3802. doi: 10.1073/pnas.79.12.3798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ewens W. J. The sampling theory of selectively neutral alleles. Theor Popul Biol. 1972 Mar;3(1):87–112. doi: 10.1016/0040-5809(72)90035-4. [DOI] [PubMed] [Google Scholar]
- Guo S. W., Thompson E. A. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics. 1992 Jun;48(2):361–372. [PubMed] [Google Scholar]
- Hanis C. L., Bertin T. K. Juxtaposed short sequence repeat types and haplotypes near exon 3 of the insulin receptor locus among Mexican Americans. Genomics. 1992 Apr;12(4):842–845. doi: 10.1016/0888-7543(92)90322-j. [DOI] [PubMed] [Google Scholar]
- Jeffreys A. J., MacLeod A., Tamaki K., Neil D. L., Monckton D. G. Minisatellite repeat coding as a digital approach to DNA typing. Nature. 1991 Nov 21;354(6350):204–209. doi: 10.1038/354204a0. [DOI] [PubMed] [Google Scholar]
- Jeffreys A. J., Royle N. J., Wilson V., Wong Z. Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature. 1988 Mar 17;332(6161):278–281. doi: 10.1038/332278a0. [DOI] [PubMed] [Google Scholar]
- KIMURA M., CROW J. F. THE NUMBER OF ALLELES THAT CAN BE MAINTAINED IN A FINITE POPULATION. Genetics. 1964 Apr;49:725–738. doi: 10.1093/genetics/49.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura M., Ohta T. Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2868–2872. doi: 10.1073/pnas.75.6.2868. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mancuso D. J., Tuley E. A., Westfield L. A., Worrall N. K., Shelton-Inloes B. B., Sorace J. M., Alevy Y. G., Sadler J. E. Structure of the gene for human von Willebrand factor. J Biol Chem. 1989 Nov 25;264(33):19514–19527. [PubMed] [Google Scholar]
- Nakamura Y., Leppert M., O'Connell P., Wolff R., Holm T., Culver M., Martin C., Fujimoto E., Hoff M., Kumlin E. Variable number of tandem repeat (VNTR) markers for human gene mapping. Science. 1987 Mar 27;235(4796):1616–1622. doi: 10.1126/science.3029872. [DOI] [PubMed] [Google Scholar]
- Nelson D. L., Warren S. T. Trinucleotide repeat instability: when and where? Nat Genet. 1993 Jun;4(2):107–108. doi: 10.1038/ng0693-107. [DOI] [PubMed] [Google Scholar]
- Peake I. R., Bowen D., Bignell P., Liddell M. B., Sadler J. E., Standen G., Bloom A. L. Family studies and prenatal diagnosis in severe von Willebrand disease by polymerase chain reaction amplification of a variable number tandem repeat region of the von Willebrand factor gene. Blood. 1990 Aug 1;76(3):555–561. [PubMed] [Google Scholar]
- Pena S. D., Macedo A. M., Gontijo N. F., Medeiros A. M., Ribeiro J. C. DNA bioprints: simple nonisotopic DNA fingerprints with biotinylated probes. Electrophoresis. 1991 Feb-Mar;12(2-3):146–152. doi: 10.1002/elps.1150120209. [DOI] [PubMed] [Google Scholar]
- Santos F. R., Pena S. D., Epplen J. T. Genetic and population study of a Y-linked tetranucleotide repeat DNA polymorphism with a simple non-isotopic technique. Hum Genet. 1993 Feb;90(6):655–656. doi: 10.1007/BF00202486. [DOI] [PubMed] [Google Scholar]
- Shriver M. D., Jin L., Chakraborty R., Boerwinkle E. VNTR allele frequency distributions under the stepwise mutation model: a computer simulation approach. Genetics. 1993 Jul;134(3):983–993. doi: 10.1093/genetics/134.3.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tautz D., Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 1984 May 25;12(10):4127–4138. doi: 10.1093/nar/12.10.4127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber J. L. Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genomics. 1990 Aug;7(4):524–530. doi: 10.1016/0888-7543(90)90195-z. [DOI] [PubMed] [Google Scholar]
- Wrogemann K., Biancalana V., Devys D., Imbert G., Trottier Y., Mandel J. L. Microsatellites and disease: a new paradigm. EXS. 1993;67:141–152. doi: 10.1007/978-3-0348-8583-6_13. [DOI] [PubMed] [Google Scholar]
- van Amstel H. K., Reitsma P. H. Tetranucleotide repeat polymorphism in the vWF gene. Nucleic Acids Res. 1990 Aug 25;18(16):4957–4957. doi: 10.1093/nar/18.16.4957-a. [DOI] [PMC free article] [PubMed] [Google Scholar]