Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Jan 18;91(2):738–741. doi: 10.1073/pnas.91.2.738

A rapid capsaicin-activated current in rat trigeminal ganglion neurons.

L Liu 1, S A Simon 1
PMCID: PMC43024  PMID: 8290592

Abstract

A subpopulation of pain fibers are activated by capsaicin, the ingredient in red peppers that produces a burning sensation when eaten or placed on skin. Previous studies on dorsal root ganglion neurons indicated that capsaicin activates sensory nerves via a single slowly activating and inactivating inward current. In rat trigeminal neurons, we identified a second capsaicin-activated inward current. This current can be distinguished from the slow one in that it rapidly activates and inactivates, requires Ca2+ for activation, and is insensitive to the potent capsaicin agonist resiniferatoxin. The rapid current, like the slower one, is inhibited by ruthenium red and capsazepine. The two capsaicin-activated inward currents share many similarities with the two inward currents activated by lowering the pH to 6.0. These similarities include kinetics, reversal potentials, responses to Ca2+, and inhibition by ruthenium red and capsazepine. These results suggest that acidic stimuli may be an endogenous activator of capsaicin-gated currents and therefore may rationalize why pain is produced when the plasma acidity is increased, as occurs during ischemia and inflammation.

Full text

PDF
738

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R., Donnerer J., Lembeck F. Capsaicin-induced stimulation of polymodal nociceptors is antagonized by ruthenium red independently of extracellular calcium. Neuroscience. 1989;32(1):255–259. doi: 10.1016/0306-4522(89)90124-3. [DOI] [PubMed] [Google Scholar]
  2. Amann R., Maggi C. A. Ruthenium red as a capsaicin antagonist. Life Sci. 1991;49(12):849–856. doi: 10.1016/0024-3205(91)90169-c. [DOI] [PubMed] [Google Scholar]
  3. Baccaglini P. I., Hogan P. G. Some rat sensory neurons in culture express characteristics of differentiated pain sensory cells. Proc Natl Acad Sci U S A. 1983 Jan;80(2):594–598. doi: 10.1073/pnas.80.2.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bevan S., Hothi S., Hughes G., James I. F., Rang H. P., Shah K., Walpole C. S., Yeats J. C. Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin. Br J Pharmacol. 1992 Oct;107(2):544–552. doi: 10.1111/j.1476-5381.1992.tb12781.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bevan S., Szolcsányi J. Sensory neuron-specific actions of capsaicin: mechanisms and applications. Trends Pharmacol Sci. 1990 Aug;11(8):330–333. doi: 10.1016/0165-6147(90)90237-3. [DOI] [PubMed] [Google Scholar]
  6. Bevan S., Yeats J. Protons activate a cation conductance in a sub-population of rat dorsal root ganglion neurones. J Physiol. 1991 Feb;433:145–161. doi: 10.1113/jphysiol.1991.sp018419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Craft R. M., Porreca F. Treatment parameters of desensitization to capsaicin. Life Sci. 1992;51(23):1767–1775. doi: 10.1016/0024-3205(92)90046-r. [DOI] [PubMed] [Google Scholar]
  8. Dray A., Bettaney J., Forster P. Actions of capsaicin on peripheral nociceptors of the neonatal rat spinal cord-tail in vitro: dependence of extracellular ions and independence of second messengers. Br J Pharmacol. 1990 Nov;101(3):727–733. doi: 10.1111/j.1476-5381.1990.tb14148.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dray A., Forbes C. A., Burgess G. M. Ruthenium red blocks the capsaicin-induced increase in intracellular calcium and activation of membrane currents in sensory neurones as well as the activation of peripheral nociceptors in vitro. Neurosci Lett. 1990 Mar 2;110(1-2):52–59. doi: 10.1016/0304-3940(90)90786-9. [DOI] [PubMed] [Google Scholar]
  10. Geppetti P., Tramontana M., Patacchini R., Del Bianco E., Santicioli P., Maggi C. A. Neurochemical evidence for the activation of the 'efferent' function of capsaicin-sensitive nerves by lowering of the pH in the guinea-pig urinary bladder. Neurosci Lett. 1990 Jun 22;114(1):101–106. doi: 10.1016/0304-3940(90)90435-c. [DOI] [PubMed] [Google Scholar]
  11. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  12. Holzer P. Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience. 1988 Mar;24(3):739–768. doi: 10.1016/0306-4522(88)90064-4. [DOI] [PubMed] [Google Scholar]
  13. Karpen J. W., Brown R. L., Stryer L., Baylor D. A. Interactions between divalent cations and the gating machinery of cyclic GMP-activated channels in salamander retinal rods. J Gen Physiol. 1993 Jan;101(1):1–25. doi: 10.1085/jgp.101.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Konnerth A., Lux H. D., Morad M. Proton-induced transformation of calcium channel in chick dorsal root ganglion cells. J Physiol. 1987 May;386:603–633. doi: 10.1113/jphysiol.1987.sp016553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Krishtal O. A., Pidoplichko V. I. A receptor for protons in the nerve cell membrane. Neuroscience. 1980;5(12):2325–2327. doi: 10.1016/0306-4522(80)90149-9. [DOI] [PubMed] [Google Scholar]
  16. LINDAHL O. Pain: a chemical explanation. Acta Rheumatol Scand. 1962;8:161–169. doi: 10.3109/rhe1.1962.8.issue-1-4.17. [DOI] [PubMed] [Google Scholar]
  17. Lindsay R. M. Nerve growth factors (NGF, BDNF) enhance axonal regeneration but are not required for survival of adult sensory neurons. J Neurosci. 1988 Jul;8(7):2394–2405. doi: 10.1523/JNEUROSCI.08-07-02394.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liu L., Pugh W., Ma H., Simon S. A. Identification of acetylcholine receptors in adult rat trigeminal ganglion neurons. Brain Res. 1993 Jul 16;617(1):37–42. doi: 10.1016/0006-8993(93)90609-q. [DOI] [PubMed] [Google Scholar]
  19. Lou Y. P., Lundberg J. M. Inhibition of low pH evoked activation of airway sensory nerves by capsazepine, a novel capsaicin-receptor antagonist. Biochem Biophys Res Commun. 1992 Nov 30;189(1):537–544. doi: 10.1016/0006-291x(92)91591-d. [DOI] [PubMed] [Google Scholar]
  20. Maggi C. A., Pierau F. K. Recent advances in research on sensory peptides and capsaicin mechanisms. A conference report. Neurosci Lett. 1991 Jan 28;122(2):199–201. doi: 10.1016/0304-3940(91)90857-p. [DOI] [PubMed] [Google Scholar]
  21. Marsh S. J., Stansfeld C. E., Brown D. A., Davey R., McCarthy D. The mechanism of action of capsaicin on sensory C-type neurons and their axons in vitro. Neuroscience. 1987 Oct;23(1):275–289. doi: 10.1016/0306-4522(87)90289-2. [DOI] [PubMed] [Google Scholar]
  22. Miller R. J. Multiple calcium channels and neuronal function. Science. 1987 Jan 2;235(4784):46–52. doi: 10.1126/science.2432656. [DOI] [PubMed] [Google Scholar]
  23. Pidoplichko V. I. Ammonia and proton gated channel populations in trigeminal ganglion neurons. Gen Physiol Biophys. 1992 Feb;11(1):39–48. [PubMed] [Google Scholar]
  24. Santicioli P., Del Bianco E., Geppetti P., Maggi C. A. Release of calcitonin gene-related peptide-like (CGRP-LI) immunoreactivity from rat isolated soleus muscle by low pH, capsaicin and potassium. Neurosci Lett. 1992 Aug 31;143(1-2):19–22. doi: 10.1016/0304-3940(92)90223-t. [DOI] [PubMed] [Google Scholar]
  25. Steen K. H., Reeh P. W., Anton F., Handwerker H. O. Protons selectively induce lasting excitation and sensitization to mechanical stimulation of nociceptors in rat skin, in vitro. J Neurosci. 1992 Jan;12(1):86–95. doi: 10.1523/JNEUROSCI.12-01-00086.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Szallasi A., Blumberg P. M. Resiniferatoxin and its analogs provide novel insights into the pharmacology of the vanilloid (capsaicin) receptor. Life Sci. 1990;47(16):1399–1408. doi: 10.1016/0024-3205(90)90518-v. [DOI] [PubMed] [Google Scholar]
  27. Szallasi A., Blumberg P. M. Specific binding of resiniferatoxin, an ultrapotent capsaicin analog, by dorsal root ganglion membranes. Brain Res. 1990 Jul 30;524(1):106–111. doi: 10.1016/0006-8993(90)90498-z. [DOI] [PubMed] [Google Scholar]
  28. Szolcsányi J. A pharmacological approach to elucidation of the role of different nerve fibres and receptor endings in mediation of pain. J Physiol (Paris) 1977 Sep;73(3):251–259. [PubMed] [Google Scholar]
  29. Szolcsányi J., Barthó L., Pethö G. Capsaicin-sensitive bronchopulmonary receptors with dual sensory-efferent function: mode of action of capsaicin antagonists. Acta Physiol Hung. 1991;77(3-4):293–304. [PubMed] [Google Scholar]
  30. Wood J. N., Winter J., James I. F., Rang H. P., Yeats J., Bevan S. Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture. J Neurosci. 1988 Sep;8(9):3208–3220. doi: 10.1523/JNEUROSCI.08-09-03208.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES