Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 May;73(5):1471–1475. doi: 10.1073/pnas.73.5.1471

Functional genetic expression of eukaryotic DNA in Escherichia coli.

K Struhl, J R Cameron, R W Davis
PMCID: PMC430318  PMID: 775490

Abstract

We have isolated a segment of DNA from the eukaryote Saccharomyces cerevisiae (baker's yeast) as a viable molecular hybrid of bacteriophage lambda DNA which, when integrated into the chromosome of an E. coli histidine auxotroph, allows this bacterium to grow in the absence of histidine. The nonrevertable, histidine auxotroph lacks the enzymatic activity of imidazole glycerol phosphate (IGP) dehydratase (EC 4.2.1.19). From genetic experiments, we conclude that expression of the segment of yeast DNA results in the production of a diffusible substance and that transcription necessary for the complementation is most likely initiated from the segment of eukaryotic DNA.

Full text

PDF
1471

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cameron J. R., Panasenko S. M., Lehman I. R., Davis R. W. In vitro construction of bacteriophage lambda carrying segments of the Escherichia coli chromosome: selection of hybrids containing the gene for DNA ligase. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3416–3420. doi: 10.1073/pnas.72.9.3416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Campbell A. The steric effect in lysogenization by bacteriophage lambda. II. Chromosomal attachment of the b2 mutant. Virology. 1965 Nov;27(3):340–345. doi: 10.1016/0042-6822(65)90113-3. [DOI] [PubMed] [Google Scholar]
  3. Garrick-Silversmith L., Hartman P. E. Histidine-requiring mutants of Escherichia coli K12. Genetics. 1970 Oct;66(2):231–244. doi: 10.1093/genetics/66.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gottesman M. E., Yarmolinsky M. B. Integration-negative mutants of bacteriophage lambda. J Mol Biol. 1968 Feb 14;31(3):487–505. doi: 10.1016/0022-2836(68)90423-3. [DOI] [PubMed] [Google Scholar]
  5. Gottesman M. E., Yarmolinsky M. B. The integration and excision of the bacteriophage lambda genome. Cold Spring Harb Symp Quant Biol. 1968;33:735–747. doi: 10.1101/sqb.1968.033.01.084. [DOI] [PubMed] [Google Scholar]
  6. Murray N. E., Murray K. Manipulation of restriction targets in phage lambda to form receptor chromosomes for DNA fragments. Nature. 1974 Oct 11;251(5475):476–481. doi: 10.1038/251476a0. [DOI] [PubMed] [Google Scholar]
  7. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  8. Thomas M., Cameron J. R., Davis R. W. Viable molecular hybrids of bacteriophage lambda and eukaryotic DNA. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4579–4583. doi: 10.1073/pnas.71.11.4579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Thomas M., Davis R. W. Studies on the cleavage of bacteriophage lambda DNA with EcoRI Restriction endonuclease. J Mol Biol. 1975 Jan 25;91(3):315–328. doi: 10.1016/0022-2836(75)90383-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES