Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 May;73(5):1528–1531. doi: 10.1073/pnas.73.5.1528

Biological consequences of incorporation of 5-fluorocytidine in the RNA of 5-fluorouracil-treated eukaryotic cells.

M K Gleason, H Fraenkel-Conrat
PMCID: PMC430330  PMID: 1064021

Abstract

Treatment of HeLa cells with 5-fluoro-[3H]uracil leads to the incorporation into cellular RNA of 5-fluorocytidine to the extent of about 0.2% of the 5-fluorouridine incorporated. In tobacco mosaic virus RNA produced in tobacco leaves this ratio is one order of magnitude lower. Copolymers of cytidylic with 5-fluorocytidylic acids show unchanged template activity with E. coli RNA polymerase, but slightly altered messenger activity in the wheat germ system, compared to poly(C), and it is suggested that some of the biological consequences of 5-fluorouracil treatment of living cells and organisms may be attributed to this mechanism.

Full text

PDF
1528

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DULBECCO R., FREEMAN G. Plaque production by the polyoma virus. Virology. 1959 Jul;8(3):396–397. doi: 10.1016/0042-6822(59)90043-1. [DOI] [PubMed] [Google Scholar]
  3. DULBECCO R., VOGT M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med. 1954 Feb;99(2):167–182. doi: 10.1084/jem.99.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DUNN D. B., SMITH J. D. Effects of 5-halogenated uracils on the growth of Escherichia coli and their incorporation into deoxyribonucleic acids. Biochem J. 1957 Nov;67(3):494–506. doi: 10.1042/bj0670494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GORDON M. P., STAEHELIN M. Studies on the incorporation of 5-fluorouracil into a virus nucleic acid. Biochim Biophys Acta. 1959 Dec;36:351–361. doi: 10.1016/0006-3002(59)90177-5. [DOI] [PubMed] [Google Scholar]
  6. GRUNBERG-MANAGO M., MICHELSON A. M. POLYNUCLEOTIDE ANALOGUES. II. STIMULATION OF AMINO ACID INCORPORATION BY POLYNUCLEOTIDE ANALOGUES. Biochim Biophys Acta. 1964 Mar 23;80:431–440. doi: 10.1016/0926-6550(64)90145-8. [DOI] [PubMed] [Google Scholar]
  7. GRUNBERG-MANAGO M., MICHELSON A. M. POLYNUCLEOTIDE ANALOGUES. IV. POLYFLUOROURIDYLIC ACID AND COPOLYMERS CONTAINING FLUOROURIDYLIC ACID. Biochim Biophys Acta. 1964 Aug 12;87:593–600. [PubMed] [Google Scholar]
  8. Giziewicz J., Shugar D. Preparative enzymic synthesis of nucleoside-5'-phosphates. Acta Biochim Pol. 1975;22(1):87–98. [PubMed] [Google Scholar]
  9. HOLOUBEK V. The composition of tobacco mosaic virus protein after the incorporation of 5-fluorouracil into the virus. J Mol Biol. 1963 Feb;6:164–166. doi: 10.1016/s0022-2836(63)80133-3. [DOI] [PubMed] [Google Scholar]
  10. KRAMER G., WITTMANN H. G., SCHUSTER H. DIE ERZEUGUNG VON MUTANTEN DES TABAKMOSAIKVIRUS DURCH DEN EINBAU VON FLUORURACIL IN DIE VIRUSNUCLEINSAEURE. Z Naturforsch B. 1964 Jan;19:46–51. [PubMed] [Google Scholar]
  11. Kaiser I. I., Kwong L. Identification of 5-fluorocytidine in RNA from Escherichia coli grown in the presence of 5-fluorouracil. FEBS Lett. 1973 Jun 1;32(2):281–283. doi: 10.1016/0014-5793(73)80853-1. [DOI] [PubMed] [Google Scholar]
  12. Keith J., Gleason M., Fraenkel-Conrat H. Characterization of the end groups of RNA of Rous sarcoma virus. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4371–4375. doi: 10.1073/pnas.71.11.4371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LITMAN R. M., PARDEE A. B. Production of bacteriophage mutants by a disturbance of deoxyribonucleic acid metabolism. Nature. 1956 Sep 8;178(4532):529–531. doi: 10.1038/178529b0. [DOI] [PubMed] [Google Scholar]
  14. MUNYON W., SALZMAN N. P. The incorporation of 5-fluoro-uracil into poliovirus. Virology. 1962 Sep;18:95–101. doi: 10.1016/0042-6822(62)90181-2. [DOI] [PubMed] [Google Scholar]
  15. Marcu K., Dudock B. Characterization of a highly efficient protein synthesizing system derived from commercial wheat germ. Nucleic Acids Res. 1974 Nov;1(11):1385–1397. doi: 10.1093/nar/1.11.1385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Means G. E., Fraenkel-Conrat H. Effects of bromine on the template and messenger specificities of polynucleotides. Biochim Biophys Acta. 1971 Oct;247(3):441–448. doi: 10.1016/0005-2787(71)90030-x. [DOI] [PubMed] [Google Scholar]
  17. Rosen B., Rothman F., Weigert M. G. Miscoding caused by 5-fluorouracil. J Mol Biol. 1969 Sep 14;44(2):363–375. doi: 10.1016/0022-2836(69)90181-8. [DOI] [PubMed] [Google Scholar]
  18. SHIMURA Y., MOSES R. E., NATHANS D. COLIPHAGE MS2 CONTAINING 5-FLUOROURACIL. I. PREPARATION AND PHYSICAL PROPERTIES. J Mol Biol. 1965 May;12:266–279. doi: 10.1016/s0022-2836(65)80298-4. [DOI] [PubMed] [Google Scholar]
  19. Singer B., Fraenkel-Conrat H. Messenger and template activities of chemically modified polynucleotides. Biochemistry. 1970 Sep 15;9(19):3694–3701. doi: 10.1021/bi00821a007. [DOI] [PubMed] [Google Scholar]
  20. Sternglanz H., Bugg C. E. Relationship between the mutagenic and base-stacking properties of halogenated uracil derivatives. The crystal structures of 5-chloro- and 5-bromouracil. Biochim Biophys Acta. 1975 Jan 6;378(1):1–11. doi: 10.1016/0005-2787(75)90130-6. [DOI] [PubMed] [Google Scholar]
  21. Thanassi N. M., Singer M. F. Polynucleotide phosphorylase of Micrococcus lysodeikticus. V. A modified preparative procedure. J Biol Chem. 1966 Aug 10;241(15):3639–3641. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES