Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 May;73(5):1542–1546. doi: 10.1073/pnas.73.5.1542

Ability of insulin to increase calcium binding by adipocyte plasma membranes.

J M McDonald, D E Bruns, L Jarett
PMCID: PMC430333  PMID: 1064022

Abstract

Calcium specifically binds to adipocyte plasma membranes, demonstrating two classes of binding sites having affinity constants of 4.5 x 10(4) M-1 and 2.0 x 10(3) M-1. Insulin (100 microunits/ml) added directly to the isolated plasma membranes caused no alteration in calcium binding, whereas incubation of the adipocytes with 100 microunits/ml of insulin resulted in a 2.50 +/- 1.6% increase in calcium binding to the subsequently isolated plasma membranes. The increase in calcium binding produced by insulin resulted from an increase in the maximum binding capacities of both classes of binding sites without alteration in their affinity constants. Additionally, a second pool of calcium in adipocyte plasma membranes has been identified by atomic absorption analysis; it was more than two times larger than the maximum binding capacity of the calcium binding system. This pool of calcium was stable, did not participate in the 45Ca2+ exchange, and was unaltered by insulin treatment. A simialr stable pool of magnesium exists in plasma membranes and was also unaffected by insulin treatment. The increased capacity of the isolated plasma membranes to bind calcium after insulin treatment of the cells may represent an important bioregulating mechanism and supports the concept that calcium may play an important role in the effector system for insulin.

Full text

PDF
1542

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avruch J., Carter J. R., Martin D. B. Insulin-stimulated plasma membranes from rat adipocytes: their physiological and physicochemical properties. Biochim Biophys Acta. 1972 Oct 23;288(1):27–42. doi: 10.1016/0005-2736(72)90220-9. [DOI] [PubMed] [Google Scholar]
  2. Birnbaumer L., Pohl S. L., Rodbell M. Adenyl cyclase in fat cells. 1. Properties and the effects of adrenocorticotropin and fluoride. J Biol Chem. 1969 Jul 10;244(13):3468–3476. [PubMed] [Google Scholar]
  3. Butcher R. W., Crofford O. B., Gammeltoff S., Gliemann J., Gavin J. R., 3rd, Goldfine I. D., Kahn C. R., Rodbell M., Roth J., Jarrett L. Letter: Insulin activity: the solid matrix. Science. 1973 Oct 26;182(4110):396–398. doi: 10.1126/science.182.4110.396-a. [DOI] [PubMed] [Google Scholar]
  4. Chang K. J., Marcus N. A., Cuatrecasas P. Cyclic adenosine monophosphate-dependent phosphorylation of specific fat cell membrane proteins by an endogenous membrane-bound protein kinase. Possible involvement in the regulation of insulin-stimulated glucose transport. J Biol Chem. 1974 Nov 10;249(21):6854–6865. [PubMed] [Google Scholar]
  5. Clausen T., Elbrink J., Martin B. R. Insulin controlling calcium distribution in muscle and fat cells. Acta Endocrinol Suppl (Copenh) 1974;191:137–143. doi: 10.1530/acta.0.077s0137. [DOI] [PubMed] [Google Scholar]
  6. Craig J. W., Rall T. W., Larner J. The influence of insulin and epinephrine on adenosine 3',5'-phosphate and glycogen transferase in muscle. Biochim Biophys Acta. 1969 Apr 1;177(2):213–219. doi: 10.1016/0304-4165(69)90130-5. [DOI] [PubMed] [Google Scholar]
  7. Hales C. N., Luzio J. P., Chandler J. A., Herman L. Localization of calcium in the smooth endoplasmic reticulum of rat isolated fat cells. J Cell Sci. 1974 Jun;15(1):1–15. doi: 10.1242/jcs.15.1.1. [DOI] [PubMed] [Google Scholar]
  8. Hammond J. M., Jarett L., Mariz I. K., Daughaday W. H. Heterogeneity of insulin receptors on fat cell membranes. Biochem Biophys Res Commun. 1972 Nov 15;49(4):1122–1128. doi: 10.1016/0006-291x(72)90329-4. [DOI] [PubMed] [Google Scholar]
  9. Ho R. J., Jeanrenaud B. Insulin-like action of ouabain. I. Effect on carbohydrate metabolism. Biochim Biophys Acta. 1967 Aug 8;144(1):61–73. doi: 10.1016/0005-2760(67)90077-x. [DOI] [PubMed] [Google Scholar]
  10. Jacobs B. O., Krahl M. E. The effects of divalent cations and insulin on protein synthesis in adipose cells. Biochim Biophys Acta. 1973 Sep 7;319(3):410–415. doi: 10.1016/0005-2787(73)90181-0. [DOI] [PubMed] [Google Scholar]
  11. Jarett L., Steiner A. L., Smith R. M., Kipnis D. M. The involvement of cyclic AMP in the hormonal regulation of protein synthesis in rat adipocytes. Endocrinology. 1972 May;90(5):1277–1284. doi: 10.1210/endo-90-5-1277. [DOI] [PubMed] [Google Scholar]
  12. Jarett L. Subcellular fractionation of adipocytes. Methods Enzymol. 1974;31:60–71. doi: 10.1016/0076-6879(74)31007-5. [DOI] [PubMed] [Google Scholar]
  13. Kafka M. S., Pak C. Y. Effects of polypeptide and protein hormones on lipid monolayers. I. Effect of insulin and parathyroid hormone on monomolecular films of monooctadecyl phosphate and stearic acid. J Gen Physiol. 1969 Jul;54(1):134–143. doi: 10.1085/jgp.54.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Khoo J. C., Steinberg D., Thompson B., Mayer S. E. Hormonal regulation of adipocyte enzymes. The effects of epinephrine and insulin on the control of lipase, phosphorylase kinase, phosphorylase, and glycogen synthase. J Biol Chem. 1973 Jun 10;248(11):3823–3830. [PubMed] [Google Scholar]
  15. Kissebah A. H., Clarke P., Vydelingum N., Hope-Gill H., Tulloch B., Fraser T. R. The role of calcium in insulin action. III. Calcium distribution in fat cells; its kinetics and the effects of adrenaline, insulin and procaine-HCl. Eur J Clin Invest. 1975 Jul 29;5(4):339–349. doi: 10.1111/j.1365-2362.1975.tb00463.x. [DOI] [PubMed] [Google Scholar]
  16. Kissebah A. H., Tulloch B. R., Hope-Gill H., Clarke P. V., Vydelingum N., Fraser T. R. Mode of insulin action. Lancet. 1975 Jan 18;1(7899):144–147. doi: 10.1016/s0140-6736(75)91435-x. [DOI] [PubMed] [Google Scholar]
  17. Kissebah A. H., Tulloch B. R., Vydelingum N., Hope-Gill H., Clarke P., Fraser T. R. The role of calcium in insulin action. II. Effects of insulin and procaine hydrochloride on lipolysis. Horm Metab Res. 1974 Sep;6(5):357–364. doi: 10.1055/s-0028-1093825. [DOI] [PubMed] [Google Scholar]
  18. Kissebah A. H., Vydelingum N., Tulloch B. R., Hope-Gill H., Fraser T. R. The role of calcium in insulin action. I. Purification and properties of enzymes regulating lipolysis in human adipose tissue: effects of cyclic-AMP and calcium ions. Horm Metab Res. 1974 Jul;6(4):247–255. doi: 10.1055/s-0028-1093861. [DOI] [PubMed] [Google Scholar]
  19. Kono T., Robinson F. W., Sarver J. A. Insulin-sensitive phosphodiesterase. Its localization, hormonal stimulation, and oxidative stabilization. J Biol Chem. 1975 Oct 10;250(19):7826–7835. [PubMed] [Google Scholar]
  20. Krahl M. E. Insulin action at the molecular level. Facts and speculations. Diabetes. 1972;21(2 Suppl):695–702. doi: 10.2337/diab.21.2.s695. [DOI] [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Levine R. Cell membrane as a primary site of insulin action. Fed Proc. 1965 Sep-Oct;24(5):1071–1073. [PubMed] [Google Scholar]
  23. Lostroh A. J., Krahl M. E. Insulin action. Accumulation in vitro of Mg 2 + and K + in rat uterus: ion pump activity. Biochim Biophys Acta. 1973 Jan 2;291(1):260–268. doi: 10.1016/0005-2736(73)90417-3. [DOI] [PubMed] [Google Scholar]
  24. MacLennan D. H., Wong P. T. Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1231–1235. doi: 10.1073/pnas.68.6.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Manganiello V., Vaughan M. An effect of insulin on cyclic adenosine 3':5'-monophosphate phosphodiesterase activity in fat cells. J Biol Chem. 1973 Oct 25;248(20):7164–7170. [PubMed] [Google Scholar]
  26. McKeel D. W., Jarett L. Preparation and characterization of a plasma membrane fraction from isolated fat cells. J Cell Biol. 1970 Feb;44(2):417–432. doi: 10.1083/jcb.44.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
  28. Randle P. J., Denton R. M. Rate control by insulin and its mechanism. Symp Soc Exp Biol. 1973;27:401–428. [PubMed] [Google Scholar]
  29. Rasmussen H., Jensen P., Lake W., Friedmann N., Goodman D. B. Cyclic nucleotides and cellular calcium metabolism. Adv Cyclic Nucleotide Res. 1975;5:375–394. [PubMed] [Google Scholar]
  30. Shlatz L., Marinetti G. V. Hormone-calcium interactions with the plasma membrane of rat liver cells. Science. 1972 Apr 14;176(4031):175–177. doi: 10.1126/science.176.4031.175. [DOI] [PubMed] [Google Scholar]
  31. Shlatz L., Marinetti G. V. Protein kinase mediated phosphorylation of the rat liver plasma membrane. Biochem Biophys Res Commun. 1971 Oct 1;45(1):51–56. doi: 10.1016/0006-291x(71)90048-9. [DOI] [PubMed] [Google Scholar]
  32. Wade D. R., Chalmers T. M., Hales C. N. The effects of Mg2+, Ca2+, ATP and cyclic 3',5'-AMP on the hormone-sensitive lipase of adipose tissue. Biochim Biophys Acta. 1970 Dec 15;218(3):496–507. doi: 10.1016/0005-2760(70)90012-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES