Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 May;73(5):1612–1616. doi: 10.1073/pnas.73.5.1612

Hormone and neurotransmitter receptors in an established vascular endothelial cell line.

V Buonassisi, J C Venter
PMCID: PMC430349  PMID: 179091

Abstract

A cell line from the intima of the rabbit aorta has been established. This cell line exhibits strict contact inhibition, and morphologically resembles intimal endothelial cells. B-type blood group antigens and the presence of fibrinolytic activity also distinguish these cells from smooth muscle cells and from fibroblasts of the aortic wall. Endothelial cells were assayed for changes in levels of adenosine 3':5'-cyclic monophosphate (cAMP) and guanosine 3':5'-cyclic monophosphate (cGMP) in response to a series of vasoactive drugs. Control levels for cAMP and cGMP are 7.01 +/- 0.82 and 1.50 +/- 0.06, respectively (mean +/- SEM). Norepinephrine, acetylcholine, 5-hydroxytryptamine, and phenylephrine increased the levels of both nucleotides significantly. Propranolol (10-5 M) and phentolamine (10-5M) inhibited, respectively, the cAMP and cGMP response to norepinephrine. Angiotensin II and histamine significantly increased cGMP levels but not cAMP levels of the endothelial cells. The cGMP increases with acetylcholine were inhibited by atropine. These results indicate that the established cell line is endothelial in nature and contains cellular receptors to a variety of vasoactive agents.

Full text

PDF
1612

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bevan J. A., Duckles S. P. Evidence for alpha-adrenergic receptors on intimal endothelium. Blood Vessels. 1975;12(5):307–310. doi: 10.1159/000158066. [DOI] [PubMed] [Google Scholar]
  2. Buonassisi V., Ozzello L. Sulfated mucopolysaccharide production by synovial sarcoma cells in vivo and in tissue culture. Cancer Res. 1973 Apr;33(4):874–881. [PubMed] [Google Scholar]
  3. Buonassisi V., Root M. Enzymatic degradation of heparin-related mucopolysaccharides from the surface of endothelial cell cultures. Biochim Biophys Acta. 1975 Mar 14;385(1):1–10. doi: 10.1016/0304-4165(75)90067-7. [DOI] [PubMed] [Google Scholar]
  4. Dawson A., Franks D. Factors affecting the expression of blood group antigen A in cultured cells. Exp Cell Res. 1967 Aug;47(1):377–385. doi: 10.1016/0014-4827(67)90240-6. [DOI] [PubMed] [Google Scholar]
  5. De Bruyn P. P., Cho Y. Contractile structures in endothelial cells of splenic sinusoids. J Ultrastruct Res. 1974 Oct;49(1):24–33. doi: 10.1016/s0022-5320(74)90075-6. [DOI] [PubMed] [Google Scholar]
  6. Franks D., Dawson A. Variation in the expression of blood group antigen A in clonal cultures of rabbit cells. Exp Cell Res. 1966 Jun;42(3):543–561. doi: 10.1016/0014-4827(66)90268-0. [DOI] [PubMed] [Google Scholar]
  7. Hornych H., Beaufils M., Richet G. The effect of exogenous angiotensin on superficial and deep glomeruli in the rat kidney. Kidney Int. 1972 Dec;2(6):336–343. doi: 10.1038/ki.1972.117. [DOI] [PubMed] [Google Scholar]
  8. Jaffe E. A., Nachman R. L., Becker C. G., Minick C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973 Nov;52(11):2745–2756. doi: 10.1172/JCI107470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LAKI K. The polymerization of proteins; the action of thrombin on fibrinogen. Arch Biochem Biophys. 1951 Jul;32(2):317–324. doi: 10.1016/0003-9861(51)90277-9. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Majno G., Shea S. M., Leventhal M. Endothelial contraction induced by histamine-type mediators: an electron microscopic study. J Cell Biol. 1969 Sep;42(3):647–672. doi: 10.1083/jcb.42.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. PUCK T. T., MARCUS P. I., CIECIURA S. J. Clonal growth of mammalian cells in vitro; growth characteristics of colonies from single HeLa cells with and without a feeder layer. J Exp Med. 1956 Feb 1;103(2):273–283. doi: 10.1084/jem.103.2.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Porter K. R., Todaro G. J., Fonte V. A scanning electron microscope study of surface features of viral and spontaneous transformants of mouse Balb-3T3 cells. J Cell Biol. 1973 Dec;59(3):633–642. doi: 10.1083/jcb.59.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Reich E. Tumor-associated fibrinolysis. Abstracted comments. Fed Proc. 1973 Dec;32(12):2174–2175. [PubMed] [Google Scholar]
  15. Ross R., Glomset J., Kariya B., Harker L. A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1207–1210. doi: 10.1073/pnas.71.4.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Steiner A. L., Kipnis D. M., Utiger R., Parker C. Radioimmunoassay for the measurement of adenosine 3',5'-cyclic phosphate. Proc Natl Acad Sci U S A. 1969 Sep;64(1):367–373. doi: 10.1073/pnas.64.1.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. TODD A. S. The histological localisation of fibrinolysin activator. J Pathol Bacteriol. 1959 Jul;78:281–283. doi: 10.1002/path.1700780131. [DOI] [PubMed] [Google Scholar]
  18. Unkeless J. C., Tobia A., Ossowski L., Quigley J. P., Rifkin D. B., Reich E. An enzymatic function associated with transformation of fibroblasts by oncogenic viruses. I. Chick embryo fibroblast cultures transformed by avian RNA tumor viruses. J Exp Med. 1973 Jan 1;137(1):85–111. doi: 10.1084/jem.137.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Venter J. C., Dixon J. E., Maroko P. R., Kaplan N. O. Biologically active catecholamines covalentyly bound to glass beads. Proc Natl Acad Sci U S A. 1972 May;69(5):1141–1145. doi: 10.1073/pnas.69.5.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Volicer L., Polgar P., Rao S. L., Rutenburg A. M. Localization of the cyclic AMP system in the arterial wall. Pharmacology. 1973;9(5):317–323. doi: 10.1159/000136403. [DOI] [PubMed] [Google Scholar]
  21. WARREN B. A. FIBRINOLYTIC PROPERTIES OF VASCULAR ENDOTHELIUM. Br J Exp Pathol. 1963 Aug;44:365–372. [PMC free article] [PubMed] [Google Scholar]
  22. WARREN B. A. FIBRIONLYTIC ACTIVITY OF VASCULAR ENDOTHELIUM. Br Med Bull. 1964 Sep;20:213–214. doi: 10.1093/oxfordjournals.bmb.a070334. [DOI] [PubMed] [Google Scholar]
  23. Warren B. A., Khon S. The ultrastructure of the lysis of fibrin by endothelium in vitro. Br J Exp Pathol. 1974 Apr;55(2):138–148. [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES