Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Jun;73(6):1907–1911. doi: 10.1073/pnas.73.6.1907

Sodium-stimulated alpha-aminoisobutyric acid transport by membrane vesicles from simian virus-transformed mouse cells.

R T Hamilton, M Nilsen-Hamilton
PMCID: PMC430416  PMID: 180527

Abstract

Uptake of alpha-aminoisobutyric acid, by membrane vesicles derived principally from the plasma membrane and endoplasmic reticulum of mouse 3T3 cells transformed by simian virus 40, is stimulated by sodium chloride. Both in the presence and absence of Na+ uptake is time-dependent and osmotically sensitive. The Na+-stimulated uptake is inhibited by other amino acids. The kinetics of transport of alpha-aminoisobutyric acid are shown to be biphasic both in whole cells and in the membrane vesicles. Only the high affinity system is stimulated by sodium in the membrane vesicles. These results demonstrate that observations made on living cells correlate with observations made on isolated membrane vesicles, and indicate that these membrane vesicles have retained the cellular amino acid transport system functionally intact.

Full text

PDF
1907

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avruch J., Wallach D. F. Preparation and properties of plasma membrane and endoplasmic reticulum fragments from isolated rat fat cells. Biochim Biophys Acta. 1971 Apr 13;233(2):334–347. doi: 10.1016/0005-2736(71)90331-2. [DOI] [PubMed] [Google Scholar]
  2. Bladé E., Harel L., Hanania N. Variation du taux d'incorporation du phosphore dans des cellules en fonction de leurs concentrations et inhibition de contact. Exp Cell Res. 1966 Mar;41(3):473–482. doi: 10.1016/s0014-4827(66)80098-8. [DOI] [PubMed] [Google Scholar]
  3. CHRISTENSEN H. N., HENDERSON M. E. Comparative uptake of free amino acids by mouse-ascites carcinoma cells and normal tissues. Cancer Res. 1952 Mar;12(3):229–231. [PubMed] [Google Scholar]
  4. COOPERSTEIN S. J., LAZAROW A. A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem. 1951 Apr;189(2):665–670. [PubMed] [Google Scholar]
  5. Colombini M., Johnstone R. M. Na+-dependent amino acid transport in plasma membrane vesicles from Ehrlich ascites cells. J Membr Biol. 1974;15(3):261–276. doi: 10.1007/BF01870091. [DOI] [PubMed] [Google Scholar]
  6. Cunningham D. D., Pardee A. B. Transport changes rapidly initiated by serum addition to "contact inhibited" 3T3 cells. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1049–1056. doi: 10.1073/pnas.64.3.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DePierre J. W., Karnovsky M. L. Ecto-enzyme of granulocytes: 5'-nucleotidase. Science. 1974 Mar 15;183(4129):1096–1098. doi: 10.1126/science.183.4129.1096. [DOI] [PubMed] [Google Scholar]
  8. ESSNER E., NOVIKOFF A. B., MASEK B. Adenosinetriphosphatase and 5-nucleotidase activities in the plasma membrane of liver cells as revealed by electron microscopy. J Biophys Biochem Cytol. 1958 Nov 25;4(6):711–716. doi: 10.1083/jcb.4.6.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Foster D. O., Pardee A. B. Transport of amino acids by confluent and nonconfluent 3T3 and polyoma virus-transformed 3T3 cells growing on glass cover slips. J Biol Chem. 1969 May 25;244(10):2675–2681. [PubMed] [Google Scholar]
  10. Foster D. O., Pardee A. B. Transport of amino acids by confluent and nonconfluent 3T3 and polyoma virus-transformed 3T3 cells growing on glass cover slips. J Biol Chem. 1969 May 25;244(10):2675–2681. [PubMed] [Google Scholar]
  11. Hatanaka M. Transport of sugars in tumor cell membranes. Biochim Biophys Acta. 1974 Apr 29;355(1):77–104. doi: 10.1016/0304-419x(74)90008-0. [DOI] [PubMed] [Google Scholar]
  12. Ho M. W., Seck J., Schmidt D., Veath M. L., Johnson W., Brady R. O., O'Brien J. S. Adult Gaucher's disease: kindred studies and demonstration of a deficiency of acid beta-glucosidase in cultured fibroblasts. Am J Hum Genet. 1972 Jan;24(1):37–45. [PMC free article] [PubMed] [Google Scholar]
  13. Jimenez de Asua L., Rozengurt E. Multiple control mechanisms underlie initiation of growth in animal cells. Nature. 1974 Oct 18;251(5476):624–626. doi: 10.1038/251624a0. [DOI] [PubMed] [Google Scholar]
  14. Kaback H. R. Transport across isolated bacterial cytoplasmic membranes. Biochim Biophys Acta. 1972 Aug 4;265(3):367–416. doi: 10.1016/0304-4157(72)90014-7. [DOI] [PubMed] [Google Scholar]
  15. Kasărov L. B., Friedman H. Enhanced Na+-K+-activated adenosine triphosphatase activity in transformed fibroblasts. Cancer Res. 1974 Aug;34(8):1862–1865. [PubMed] [Google Scholar]
  16. Kimelberg H. K., Mayhew E. Increased ouabain-sensitive 86Rb+ uptake and sodium and potassium ion-activated adenosine triphosphatase activity in transformed cell lines. J Biol Chem. 1975 Jan 10;250(1):100–104. [PubMed] [Google Scholar]
  17. Li C. C., Hochstadt J. Membrane-associated enzymes involved in nucleoside processing by plasma membrane vesicles isolated from L929 cells grown in defined medium. J Biol Chem. 1976 Feb 25;251(4):1181–1187. [PubMed] [Google Scholar]
  18. Li C. C., Hochstadt J. Transport mechanisms in isolated plasma membranes. Nucleoside processing by membrane vesicles from mouse fibroblast cells grown in defined medium. J Biol Chem. 1976 Feb 25;251(4):1175–1180. [PubMed] [Google Scholar]
  19. Otsuka H., Moskowitz M. Difference in transport of leucine in attached and suspended 3T3 cells. J Cell Physiol. 1975 Jun;85(3):665–673. doi: 10.1002/jcp.1040850319. [DOI] [PubMed] [Google Scholar]
  20. Quinlan D. C., Hochstadt J. An altered rate of uridine transport in membrane vesicles isolated from growing and quiescent mouse 3T3 fibroblast cells. Proc Natl Acad Sci U S A. 1974 Dec;71(12):5000–5003. doi: 10.1073/pnas.71.12.5000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Quinlan D. C., Hochstadt J. Group translocation of the ribose moiety of inosine by vesicles of plasma membrane from T(3 cells transformed by Simian virus 40. J Biol Chem. 1976 Jan 25;251(2):344–354. [PubMed] [Google Scholar]
  22. Quinlan D. C., Parnes J. R., Shalom R., Garvey T. Q., 3rd, Isselbacher K. J., Hochstadt J. Sodium-stimulated amino acid uptake into isolated membrane vesicles from Balb/c 3T3 cells transformed by simian virus 40. Proc Natl Acad Sci U S A. 1976 May;73(5):1631–1635. doi: 10.1073/pnas.73.5.1631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rozengurt E., Heppel L. A. Serum rapidly stimulates ouabain-sensitive 86-RB+ influx in quiescent 3T3 cells. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4492–4495. doi: 10.1073/pnas.72.11.4492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. SELLINGER O. Z., BEAUFAY H., JACQUES P., DOYEN A., DE DUVE C. Tissue fractionation studies. 15. Intracellular distribution and properties of beta-N-acetylglucosaminidase and beta-galactosidase in rat liver. Biochem J. 1960 Mar;74:450–456. doi: 10.1042/bj0740450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sigrist-Nelson K., Murer H., Hopfer U. Active alanine transport in isolated brush border membranes. J Biol Chem. 1975 Jul 25;250(14):5674–5680. [PubMed] [Google Scholar]
  26. Weber M. J., Edlin G. Phosphate transport, nucleotide pools, and ribonucleic acid synthesis in growing and in density-inhibited 3T3 cells. J Biol Chem. 1971 Mar 25;246(6):1828–1833. [PubMed] [Google Scholar]
  27. Yoshikawa-Fukada M., Nojima T. Biochemical characteristics of normal and virally transformed mouse cell lines. J Cell Physiol. 1972 Dec;80(3):421–430. doi: 10.1002/jcp.1040800312. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES