Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Jun;73(6):1921–1925. doi: 10.1073/pnas.73.6.1921

Affinity label for beta-adrenergic receptor in turkey erythrocytes.

D Atlas, M L Steer, A Levitzki
PMCID: PMC430419  PMID: 180528

Abstract

The compound N-[2-hydroxy-3-(1-naphthoxy)-propyl]-N'-bromoacetylethylenediamine (NHNP-NBE) was found to label covalently the beta-adrenergic receptor in turkey erythrocytes. The compound inhibits irreversibly 1-epinephrine-dependent adenylate cyclase activity [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] in the whole turkey erythrocyte as well as in the erythrocyte membranes possessing the beta-receptor. The affinity label blocks, also irreversibly, the specific [3H] propranolol binding, whereas other bromoacetyl compounds tested have no effect on binding, even at high concentrations, which cause enzyme inactivation. 1-Epinephrine and propranolol offer protection against the affinity label in whole turkey erythrocytes as well as in membranes prepared from these cells. The potential usefulness of an irreversible beta-antagonist is discussed.

Full text

PDF
1921

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander R. W., Williams L. T., Lefkowitz R. J. Identification of cardiac beta-adrenergic receptors by (minus) [3H]alprenolol binding. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1564–1568. doi: 10.1073/pnas.72.4.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atlas D., Levitzki A. An irreversible blocker for the beta-adrenergic receptor. Biochem Biophys Res Commun. 1976 Mar 22;69(2):397–403. doi: 10.1016/0006-291x(76)90535-0. [DOI] [PubMed] [Google Scholar]
  3. Atlas D., Steer M. L., Levitzki A. Stereospecific binding of propranolol and catecholamines to the beta-adrenergic receptor. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4246–4248. doi: 10.1073/pnas.71.10.4246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aurbach G. D., Fedak S. A., Woodard C. J., Palmer J. S., Hauser D., Troxler F. Beta-adrenergic receptor: stereospecific interaction of iodinated beta-blocking agent with high affinity site. Science. 1974 Dec 27;186(4170):1223–1224. doi: 10.1126/science.186.4170.1223. [DOI] [PubMed] [Google Scholar]
  5. Erez M., Weinstock M., Cohen S., Shtacher G. Potential probe for isolation of the beta-adrenoceptor, chloropractolol. Nature. 1975 Jun 19;255(5510):635–636. doi: 10.1038/255635a0. [DOI] [PubMed] [Google Scholar]
  6. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hartman F. C. Haloacetol phosphates. Characterization of the active site of rabbit muscle triose phosphate isomerase. Biochemistry. 1971 Jan 5;10(1):146–154. doi: 10.1021/bi00777a021. [DOI] [PubMed] [Google Scholar]
  8. ING H. R., ORMEROD W. E. The synthesis and local anesthetic properties of aryloxypropanolamines. J Pharm Pharmacol. 1952 Jan;4(1):21–26. doi: 10.1111/j.2042-7158.1952.tb13106.x. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Lefkowitz R. J., Mukherjee C., Coverstone M., Caron M. G. Stereospecific (3H)(minus)-alprenolol binding sites, beta-adrenergic receptors and adenylate cyclase. Biochem Biophys Res Commun. 1974 Sep 23;60(2):703–709. doi: 10.1016/0006-291x(74)90297-6. [DOI] [PubMed] [Google Scholar]
  11. Levitzki A., Atlas D., Steer M. L. The binding characteristics and number of beta-adrenergic receptors on the turkey erythrocyte. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2773–2776. doi: 10.1073/pnas.71.7.2773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Levitzki A., Sevilia N., Atlas D., Steer M. L. Ligand specificity and characteristics of the beta-adrenergic receptor in turkey erythrocyte plasma membranes. J Mol Biol. 1975 Sep 5;97(1):35–46. [PubMed] [Google Scholar]
  13. Pfeuffer T., Helmreich E. J. Activation of pigeon erythrocyte membrane adenylate cyclase by guanylnucleotide analogues and separation of a nucleotide binding protein. J Biol Chem. 1975 Feb 10;250(3):867–876. [PubMed] [Google Scholar]
  14. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  15. Steer M. L., Levitzki A. The control of adenylate cyclase by calcium in turkey erythrocyte ghosts. J Biol Chem. 1975 Mar 25;250(6):2080–2084. [PubMed] [Google Scholar]
  16. Steer M. L., Levitzki A. The interaction of catecholamines, Ca2+ and adenylate cyclase in the intact turkey erythrocyte. Arch Biochem Biophys. 1975 Mar;167(1):371–376. doi: 10.1016/0003-9861(75)90473-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES