Abstract
Conformational energy calculations are used to analyze the interactions of structural substructures in subtilisin BPN. These substructures are kept fixed or "rigid" so that the only variables in the calculations are the backbone segments that separate them. The flexible segments are assumed to be free turns. Using this representation of the protein it is possible to predict both a likely order of events along a folding pathway and preferred modes of conformational changes of the native protein. Moreover, when the native structure has been perturbed by moving the substructures apart, it is possible to assess the range of interactions that return the protein, upon energy minimization, to its original conformation. These results suggest an approach to the folding problem based on the piecemeal formation of tertiary structure from smaller prefolded fragments.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anfinsen C. B. The formation and stabilization of protein structure. Biochem J. 1972 Jul;128(4):737–749. doi: 10.1042/bj1280737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drenth J., Hol W. G., Jansonius J. N., Koekoek R. A comparison of the three-dimensional structures of subtilisin BPN' and subtilisin novo. Cold Spring Harb Symp Quant Biol. 1972;36:107–116. doi: 10.1101/sqb.1972.036.01.016. [DOI] [PubMed] [Google Scholar]
- Gelin B. R., Karplus M. Sidechain torsional potentials and motion of amino acids in porteins: bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2002–2006. doi: 10.1073/pnas.72.6.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Honig B., Kabat E. A., Katz L., Levinthal C., Wu T. T. Model-building of neurohypophyseal hormones. J Mol Biol. 1973 Oct 25;80(2):277–295. doi: 10.1016/0022-2836(73)90173-3. [DOI] [PubMed] [Google Scholar]
- Katz L., Levinthal C. Interactive computer graphics and representation of complex biological structures. Annu Rev Biophys Bioeng. 1972;1:465–504. doi: 10.1146/annurev.bb.01.060172.002341. [DOI] [PubMed] [Google Scholar]
- Kuntz I. D. Protein folding. J Am Chem Soc. 1972 May 31;94(11):4009–4012. doi: 10.1021/ja00766a060. [DOI] [PubMed] [Google Scholar]
- Levitt M., Warshel A. Computer simulation of protein folding. Nature. 1975 Feb 27;253(5494):694–698. doi: 10.1038/253694a0. [DOI] [PubMed] [Google Scholar]
- Lewis P. N., Momany F. A., Scheraga H. A. Folding of polypeptide chains in proteins: a proposed mechanism for folding. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2293–2297. doi: 10.1073/pnas.68.9.2293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGuire R. F., Momany F. A., Scheraga H. A. Energy parameters in polypeptides. V. An empirical hydrogen bond potential function based on molecular orbital calculations. J Phys Chem. 1972 Feb 3;76(3):375–393. doi: 10.1021/j100647a017. [DOI] [PubMed] [Google Scholar]
- Ptitsyn O. B., Rashin A. A. A model of myoglobin self-organization. Biophys Chem. 1975 Feb;3(1):1–20. doi: 10.1016/0301-4622(75)80033-0. [DOI] [PubMed] [Google Scholar]
- Rao S. T., Rossmann M. G. Comparison of super-secondary structures in proteins. J Mol Biol. 1973 May 15;76(2):241–256. doi: 10.1016/0022-2836(73)90388-4. [DOI] [PubMed] [Google Scholar]
- Wetlaufer D. B. Nucleation, rapid folding, and globular intrachain regions in proteins. Proc Natl Acad Sci U S A. 1973 Mar;70(3):697–701. doi: 10.1073/pnas.70.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright C. S., Alden R. A., Kraut J. Structure of subtilisin BPN' at 2.5 angström resolution. Nature. 1969 Jan 18;221(5177):235–242. doi: 10.1038/221235a0. [DOI] [PubMed] [Google Scholar]
