Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Jun;73(6):2118–2122. doi: 10.1073/pnas.73.6.2118

Mechanism of human lymphocyte stimulation by concanavalin A: role of valence and surface binding sites.

J R Wands, D K Podolsky, K J Isselbacher
PMCID: PMC430461  PMID: 1064878

Abstract

A monovalent form of concanavalin A (m-Con A) has been prepared to determine the importance of valence for human lymphocyte surface binding and subsequent lymphocyte stimulation as measured by blast transformation and cytotoxicity. Concanavalin A (Con A) was fragmented by a proteolytic process and the m-Con A) derivative was isolated by elution with an ascending D-glucose gradient on a Sephadex G-200 column. The molecular weight of m-Con A was 18,000 by sodium dodecyl sulfate-polyacrylamide electrophoresis. Equilibrium dialysis with alpha-methyl D-glucoside and subsequent Scatchard plot analysis revealed an association constant (Ka) of 1.2 X 10(3) liters/mol and a valence of 1.1. Incubation of lymphocytes with 125I-labeled m-Con A demonstrated surface binding at 1.21 X 10(6) molecules per cell, which was comparable to the binding of [3H] Con A (1.02 X 10(6) molecules per cell). However, in contrast to the intact lectin, m-Con A had a markedly reduced capacity to agglutinate rabbit erythrocytes and human lymphocytes and did not stimulate lymphocyte blast transformation or cytotoxicity at 1 and 10 mug/ml. Finally, pretreatment of lymphocytes with m-Con A blocked blast transformation induced by Con A. These observations demonstrate that m-Con A binds to lymphocyte surface receptors but does not stimulate blast transformation or cytotoxicity, suggesting that Con A must bridge binding sites on the lymphocyte surface to induce lymphocyte activation.

Full text

PDF
2118

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe Y., Iwabuchi M., Ishii S. I. Multiple forms in the subunit structure of concanavalin A. Biochem Biophys Res Commun. 1971 Dec 3;45(5):1271–1278. doi: 10.1016/0006-291x(71)90155-0. [DOI] [PubMed] [Google Scholar]
  2. Allwood G., Asherson G. L., Davey M. J., Goodford P. J. The early uptake of radioactive calcium by human lymphocytes treated with phytohaemagglutinin. Immunology. 1971 Sep;21(3):509–516. [PMC free article] [PubMed] [Google Scholar]
  3. Andersson J., Edelman G. M., Möller G., Sjöberg O. Activation of B lymphocytes by locally concentrated concanavalin A. Eur J Immunol. 1972 Jun;2(3):233–235. doi: 10.1002/eji.1830020307. [DOI] [PubMed] [Google Scholar]
  4. BOYD W. C. The lectins: their present status. Vox Sang. 1963 Jan-Feb;8:1–32. doi: 10.1111/j.1423-0410.1963.tb04146.x. [DOI] [PubMed] [Google Scholar]
  5. Barnett R. E., Scott R. E., Furcht L. T., Kersey J. H. Evidence that mitogenic lectins induce changes in lymphocyte membrane fluidity. Nature. 1974 May 31;249(456):465–466. doi: 10.1038/249465a0. [DOI] [PubMed] [Google Scholar]
  6. Craig S. W., Cuatrecasas P. Mobility of cholera toxin receptors on rat lymphocyte membranes. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3844–3848. doi: 10.1073/pnas.72.10.3844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Petris S., Raff M. C. Ultrastructural distribution and redistribution of alloantigens and concanavalin A receptors on the surface of mouse lymphocytes. Eur J Immunol. 1974 Feb;4(2):130–137. doi: 10.1002/eji.1830040213. [DOI] [PubMed] [Google Scholar]
  8. Edelman G. M., Cunningham B. A., Reeke G. N., Jr, Becker J. W., Waxdal M. J., Wang J. L. The covalent and three-dimensional structure of concanavalin A. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2580–2584. doi: 10.1073/pnas.69.9.2580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evans P. M., Jones B. M. Studies on cellular adhesion-aggregation. Consideration of involvement of concanavalin A receptors. Exp Cell Res. 1974 Sep;88(1):56–62. doi: 10.1016/0014-4827(74)90617-x. [DOI] [PubMed] [Google Scholar]
  10. Fanger M. W., Hart D. A., Wells J. V., Nisonoff A. Requirement for cross-linkage in the stimulation of transformation of rabbit peripheral lymphocytes by antiglobulin reagents. J Immunol. 1970 Dec;105(6):1484–1492. [PubMed] [Google Scholar]
  11. Feldmann M., Easten A. The relationship between antigenic structure and the requirement for thymus-derived cells in the immune response. J Exp Med. 1971 Jul 1;134(1):103–119. doi: 10.1084/jem.134.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fraser A. R., Hemperly J. J., Wang J. L., Edelman G. M. Monovalent derivatives of concanavalin A. Proc Natl Acad Sci U S A. 1976 Mar;73(3):790–794. doi: 10.1073/pnas.73.3.790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gunther G. R., Wang J. L., Yahara I., Cunningham B. A., Edelman G. M. Concanavalin A derivatives with altered biological activities. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1012–1016. doi: 10.1073/pnas.70.4.1012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hadden J. W., Hadden E. M., Haddox M. K., Goldberg N. D. Guanosine 3':5'-cyclic monophosphate: a possible intracellular mediator of mitogenic influences in lymphocytes. Proc Natl Acad Sci U S A. 1972 Oct;69(10):3024–3027. doi: 10.1073/pnas.69.10.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kalb A. J., Levitzki A. Metal-binding sites of concanavalin A and their role in the binding of alpha-methyl d-glucopyranoside. Biochem J. 1968 Oct;109(4):669–672. doi: 10.1042/bj1090669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Knight S. T., Thorbecke G. J. Ontogeny of cellular immunity: development in rat thymocytes of mixed lymphocyte reactivity to allogeneic and xenogeneic cells. Cell Immunol. 1971 Feb;2(1):91–100. doi: 10.1016/0008-8749(71)90028-1. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Novogrodsky A., Katchalski E. Lymphocyte transformation induced by concanavalin A and its reversion by methyl-alpha-D-mannopyranoside. Biochim Biophys Acta. 1971 Jan 28;228(2):579–583. doi: 10.1016/0005-2787(71)90064-5. [DOI] [PubMed] [Google Scholar]
  19. Peters J. H., Hausen P. Effect of phytohemagglutinin on lymphocyte membrane transport. 2. Stimulation of "facilitated diffusion" of 3-O-methyl-glucose. Eur J Biochem. 1971 Apr 30;19(4):509–513. doi: 10.1111/j.1432-1033.1971.tb01342.x. [DOI] [PubMed] [Google Scholar]
  20. Peters J. H., Hausen P. Effect of phytohemagglutinin on lymphocyte membrane transport. I. Stimulation of uridine uptake. Eur J Biochem. 1971 Apr 30;19(4):502–508. doi: 10.1111/j.1432-1033.1971.tb01341.x. [DOI] [PubMed] [Google Scholar]
  21. Podolsky D. K., Weiser M. M., La Mont J. T., Isselbacher K. J. Galactosyltransferase and concanavalin A agglutination of cells. Proc Natl Acad Sci U S A. 1974 Mar;71(3):904–908. doi: 10.1073/pnas.71.3.904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Powell A. E., Leon M. A. Reversible interaction of human lymphocytes with the mitogen concanavalin A. Exp Cell Res. 1970 Oct;62(2):315–325. doi: 10.1016/0014-4827(70)90560-4. [DOI] [PubMed] [Google Scholar]
  23. Quastel M. R., Kaplan J. G. Early stimulation of potassium uptake in lymphocytes treated with PHA. Exp Cell Res. 1970 Nov;63(1):230–233. doi: 10.1016/0014-4827(70)90360-5. [DOI] [PubMed] [Google Scholar]
  24. ROBBINS J. H. TISSUE CULTURE STUDIES OF THE HUMAN LYMPHOCYTE. Science. 1964 Dec 25;146(3652):1648–1654. doi: 10.1126/science.146.3652.1648. [DOI] [PubMed] [Google Scholar]
  25. Ruddon R. W., Weisenthal L. M., Lundeen D. E., Bessler W., Goldstein I. J. Stimulation of mitogenesis in normal and leukemic human lymphocytes by divalent and tetravalent lima bean lectins. Proc Natl Acad Sci U S A. 1974 May;71(5):1848–1851. doi: 10.1073/pnas.71.5.1848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stobo J. D., Rosenthal A. S., Paul W. E. Functional heterogeneity of murine lymphoid cells. I. Responsiveness to and surface binding of concanavalin A and phytohemagglutinin. J Immunol. 1972 Jan;108(1):1–17. [PubMed] [Google Scholar]
  27. Thomasson D. L., Doyle R. J. Monovalent concanavalin A. Biochem Biophys Res Commun. 1975 Dec 15;67(4):1545–1552. doi: 10.1016/0006-291x(75)90202-8. [DOI] [PubMed] [Google Scholar]
  28. Wands J. R., Perrotto J. L., Alpert E., Isselbacher K. J. Cell-mediated immunity in acute and chronic hepatitis. J Clin Invest. 1975 May;55(5):921–929. doi: 10.1172/JCI108021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wang J. L., Cunningham B. A., Edelman G. M. Unusual fragments in the subunit structure of concanavalin A. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1130–1134. doi: 10.1073/pnas.68.6.1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wang J. L., Cunningham B. A., Edelman G. M. Unusual fragments in the subunit structure of concanavalin A. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1130–1134. doi: 10.1073/pnas.68.6.1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Woodruff M. F., Reid B., James K. Effect of antilymphocytic antibody and antibody fragments on human lymphocytes in vitro. Nature. 1967 Aug 5;215(5101):591–594. doi: 10.1038/215591a0. [DOI] [PubMed] [Google Scholar]
  32. Yahara I., Edelman G. M. Restriction of the mobility of lymphocyte immunoglobulin receptors by concanavalin A. Proc Natl Acad Sci U S A. 1972 Mar;69(3):608–612. doi: 10.1073/pnas.69.3.608. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES