Abstract
HeLa cells contain beta-adrenergic receptors that are characterized by specific binding of I[3H]dihydroalprenolol, increased 3':5'-cyclic AMP production in intact cells after incubation with l-isoproterenol, and increased adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] activity in the presence of l-isoproterenol. After cells were cultured with butyrate, the number of beta-adrenergic receptors, cyclic AMP production in intact cells, and adenylate cyclase activation by l-isoproterenol were increased severalfold over those of untreated cells. The increase involved the induction of synthesis of new receptor molecules with identical affinities for l-[3H]-dihydroalprenolol; all three processes were blocked by cycloheximide and actinomycin D. This induction was relatively specific for butyric acid and only the closely related short-chain fatty acids, propionic and valeric acids, were capable of partially inducing the same effect. In contrast to induction of beta-adrenergic binding sites, there was no increase in basal or fluoride-activated adenylate cyclase activity, indicating that the beta-adrenergic receptor and adenylate cyclase and different molecules that may be controlled separately.
Full text
PDF![873](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29f1/430511/53d2b605a255/pnas00025-0079.png)
![874](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29f1/430511/2b356518cd3f/pnas00025-0080.png)
![875](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29f1/430511/60c2797d6591/pnas00025-0081.png)
![876](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29f1/430511/b5f01deccee7/pnas00025-0082.png)
![877](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29f1/430511/ec6119f5267d/pnas00025-0083.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aurbach G. D., Fedak S. A., Woodard C. J., Palmer J. S., Hauser D., Troxler F. Beta-adrenergic receptor: stereospecific interaction of iodinated beta-blocking agent with high affinity site. Science. 1974 Dec 27;186(4170):1223–1224. doi: 10.1126/science.186.4170.1223. [DOI] [PubMed] [Google Scholar]
- Brown B. L., Albano J. D., Ekins R. P., Sgherzi A. M. A simple and sensitive saturation assay method for the measurement of adenosine 3':5'-cyclic monophosphate. Biochem J. 1971 Feb;121(3):561–562. doi: 10.1042/bj1210561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown E. M., Fedak S. A., Woodard C. J., Aurbach G. D. Beta-Adrenergic receptor interactions. Direct comparison of receptor interaction and biological activity. J Biol Chem. 1976 Mar 10;251(5):1239–1246. [PubMed] [Google Scholar]
- Cuatrecasas P. Membrane receptors. Annu Rev Biochem. 1974;43(0):169–214. doi: 10.1146/annurev.bi.43.070174.001125. [DOI] [PubMed] [Google Scholar]
- Fishman P. H., Simmons J. L., Brady R. O., Freese E. Induction of glycolipid biosynthesis by sodium butyrate in HeLa cells. Biochem Biophys Res Commun. 1974 Jul 10;59(1):292–299. doi: 10.1016/s0006-291x(74)80205-6. [DOI] [PubMed] [Google Scholar]
- GARREN L. D., HOWELL R. R., TOMKINS G. M., CROCCO R. M. A PARADOXICAL EFFECT OF ACTINOMYCIN D: THE MECHANISM OF REGULATION OF ENZYME SYNTHESIS BY HYDROCORTISONE. Proc Natl Acad Sci U S A. 1964 Oct;52:1121–1129. doi: 10.1073/pnas.52.4.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghosh M. K., Cox R. P. Production of human chorionic gonadotropin in HeLa cell cultures. Nature. 1976 Feb 5;259(5542):416–417. doi: 10.1038/259416a0. [DOI] [PubMed] [Google Scholar]
- Gilman A. G., Minna J. D. Expression of genes for metabolism of cyclic adenosine 3':5'-monophosphate in somatic cells. I. Responses to catecholamines in parental and hybrid cells. J Biol Chem. 1973 Oct 10;248(19):6610–6617. [PubMed] [Google Scholar]
- Ginsburg E., Salomon D., Sreevalsan T., Freese E. Growth inhibition and morphological changes caused by lipophilic acids in mammalian cells. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2457–2461. doi: 10.1073/pnas.70.8.2457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffin M. J., Price G. H., Bazzell K. L. A study of adenosine 3':5'-cyclic monophosphate, sodium butyrate and cortisol as inducers of HeLa alkaline phosphatase. Arch Biochem Biophys. 1974 Oct;164(2):619–623. doi: 10.1016/0003-9861(74)90073-3. [DOI] [PubMed] [Google Scholar]
- Henneberry R. C., Fishman P. H., Freese E. Morphological changes in cultured mammalian cells: prevention by the calcium ionophore A23187. Cell. 1975 May;5(1):1–9. doi: 10.1016/0092-8674(75)90085-9. [DOI] [PubMed] [Google Scholar]
- Kebabian J. W., Zatz M., Romero J. A., Axelrod J. Rapid changes in rat pineal beta-adrenergic receptor: alterations in l-(3H)alprenolol binding and adenylate cyclase. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3735–3739. doi: 10.1073/pnas.72.9.3735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leder A., Leder P. Butyric acid, a potent inducer of erythroid differentiation in cultured erythroleukemic cells. Cell. 1975 Jul;5(3):319–322. doi: 10.1016/0092-8674(75)90107-5. [DOI] [PubMed] [Google Scholar]
- Lefkowitz R. J. The beta-adrenergic receptor. Life Sci. 1976 Mar 1;18(5):461–472. doi: 10.1016/0024-3205(76)90323-4. [DOI] [PubMed] [Google Scholar]
- Maguire M. E., Wiklund R. A., Anderson H. J., Gilman A. G. Binding of (125I)iodohydroxybenzylpindolol to putative beta-adrenergic receptors of rat glioma cells and other cell clones. J Biol Chem. 1976 Mar 10;251(5):1221–1231. [PubMed] [Google Scholar]
- Makman M. H. Properties of adenylate cyclase of lymphoid cells. Proc Natl Acad Sci U S A. 1971 May;68(5):885–889. doi: 10.1073/pnas.68.5.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minna J. D., Gilman A. G. Expression of genes for metabolism of cyclic adenosine 3':5'-monophosphate in somatic cells. II. Effects of prostaglandin E1 and theophylline on parental and hybrid cells. J Biol Chem. 1973 Oct 10;248(19):6618–6625. [PubMed] [Google Scholar]
- Mukherjee C., Caron M. G., Lefkowitz R. J. Regulation of adenylate cyclase coupled beta-adrenergic receptors by beta-adrenergic catecholamines. Endocrinology. 1976 Aug;99(2):347–357. doi: 10.1210/endo-99-2-347. [DOI] [PubMed] [Google Scholar]
- Schneider F. H. Effects of sodium butyrate on mouse neuroblastoma cells in culture. Biochem Pharmacol. 1976 Oct 15;25(20):2309–2317. doi: 10.1016/0006-2952(76)90015-0. [DOI] [PubMed] [Google Scholar]
- Simmons J. L., Fishman P. H., Freese E., Brady R. O. Morphological alterations and ganglioside sialyltransferase activity induced by small fatty acids in HeLa cells. J Cell Biol. 1975 Aug;66(2):414–424. doi: 10.1083/jcb.66.2.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith C. C., Tallman J. F., Post R. M., van Kammen D. P., Jimerson D. C., Brown G. L. An examination of baseline and drug-induced levels of cyclic nucleotides in the cerebrospinal fluid of control and psychiatric patients. Life Sci. 1976 Jul 1;19(1):131–136. doi: 10.1016/0024-3205(76)90383-0. [DOI] [PubMed] [Google Scholar]
- Steer M. L., Atlas D., Levitzki A. Inter-relations between beta-adrenergic receptors, adenylate cyclase and calcium. N Engl J Med. 1975 Feb 20;292(8):409–414. doi: 10.1056/NEJM197502202920809. [DOI] [PubMed] [Google Scholar]
- Steinberg R. A., Levinson B. B., Tomkins G. M. "Superinduction" of tyrosine aminotransferase by actinomycin D: a reevaluation. Cell. 1975 May;5(1):29–35. doi: 10.1016/0092-8674(75)90088-4. [DOI] [PubMed] [Google Scholar]
- Williams L. T., Snyderman R., Lefkowitz R. J. Identification of beta-adrenergic receptors in human lymphocytes by (-) (3H) alprenolol binding. J Clin Invest. 1976 Jan;57(1):149–155. doi: 10.1172/JCI108254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright J. A. Morphology and growth rate changes in Chinese hamster cells cultured in presence of sodium butyrate. Exp Cell Res. 1973 Apr;78(2):456–460. doi: 10.1016/0014-4827(73)90091-8. [DOI] [PubMed] [Google Scholar]