Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Jul;73(7):2384–2387. doi: 10.1073/pnas.73.7.2384

Comparative study by circular dichroism of the conformation of deazapurine nucleosides and that of common purine nucleosides.

D W Miles, L B Townsend, P Redington, H Eyring
PMCID: PMC430576  PMID: 1065890

Abstract

Purine nucleoside analogs modified by replacement of the nitrogen atom at the 3 position by a CH group give a characteristic circular dichroism curve that is not substantially modified by chemical substitution at the 8 position. Since it is rather well established that 8-substituted purine nucleosides are predominantly in the syn conformation in aqueous solution, it follows that the 3-deazapurine nucleosides, whether substituted at position 8 or not, also favor the syn conformation. These data are in sharp contrast to the circular dichroism data obtained on 8-halogenated and 8-alkylated derivatives of adenosine and guanosine, which give circular dichroism profiles substantially different from those obtained on the parent compounds. Certain purine-nucleoside-utilizing enzymes fail to interact effectively with either the unsubstituted 3-deaza analogs or the 8-substituted derivatives of adenosine and guanosine. The hypothesis recently given that the inactivity of the 8-substituted derivatives springs from their syn-conformational preference is tentatively accepted to explain the inactivity of the 3-deaza analogs.

Full text

PDF
2384

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartholomew D. G., Dea P., Robins R. K., Revankar G. R. Imidazo(1,2-c)pyrimidine nucleosides. Synthesis of N-bridgehead inosine monophosphate and guanosine monophosphate analogues related to 3-deazapurines. J Org Chem. 1975 Dec 12;40(25):3708–3713. doi: 10.1021/jo00913a019. [DOI] [PubMed] [Google Scholar]
  2. Cook P. D., Rousseau R. J., Mian A. M., Meyer R. B., Jr, Dea P., Ivanovics G. Letter: A new class of potent guanine antimetabolites. Synthesis of 3-deazaguanine, 3-deazaguanosine, and 3-deazaguanylic acid by a novel ring closure of imidazole precursors. J Am Chem Soc. 1975 May 14;97(10):2916–2916. doi: 10.1021/ja00843a059. [DOI] [PubMed] [Google Scholar]
  3. Delabar J. M., Guschlbauer W. Nucleoside conformations. XI. Solvent effects on optical properties of guanosine and its derivatives in dilute solutions. J Am Chem Soc. 1973 Aug 22;95(17):5729–5735. doi: 10.1021/ja00798a047. [DOI] [PubMed] [Google Scholar]
  4. Evans F. E., Sarma R. H. A new method to determine sugar-base torsion in purine nucleosides and nucleotides. FEBS Lett. 1974 May 1;41(2):253–255. doi: 10.1016/0014-5793(74)81223-8. [DOI] [PubMed] [Google Scholar]
  5. Guschlbauer W., Courtois Y. pH induced changes in optical activity of guanine nucleosides. FEBS Lett. 1968 Aug;1(3):183–186. doi: 10.1016/0014-5793(68)80055-9. [DOI] [PubMed] [Google Scholar]
  6. Hampton A., Harper P. J., Sasaki T. Substrate properties of cycloadenosines with adenosine aminohydrolase as evidence for the conformation of enzyme-bound adenosine. Biochemistry. 1972 Dec 5;11(25):4736–4739. doi: 10.1021/bi00775a016. [DOI] [PubMed] [Google Scholar]
  7. Ikehara M., Fukui T., Uesugi S. Polynucleotides. XXI. Synthesis and properties of poly 1-deazaadenylic acid and poly 3-deazaadenylic acid. J Biochem. 1974 Jul;76(1):107–115. doi: 10.1093/oxfordjournals.jbchem.a130534. [DOI] [PubMed] [Google Scholar]
  8. Ikehara M., Tazawa I., Fukui T. Polynucleotides. VII. Synthesis of ribopolynucleotides containing 8-substituted purine nucleotides by polynucleotide phosphorylase. Biochemistry. 1969 Feb;8(2):736–743. doi: 10.1021/bi00830a040. [DOI] [PubMed] [Google Scholar]
  9. Ikehara M., Uesugi S., Yoshida K. Studies on the conformation of purine nucleosides and their 5'-phosphates. Biochemistry. 1972 Feb 29;11(5):830–836. doi: 10.1021/bi00755a023. [DOI] [PubMed] [Google Scholar]
  10. Jenkins S. R., Holly F. W., Robins R. K. 4-Amino-1-(beta-D-ribofuranosyl)benzimidazole. J Med Chem. 1968 Jul;11(4):910–910. doi: 10.1021/jm00310a058. [DOI] [PubMed] [Google Scholar]
  11. Kapuler A. M., Reich E. Some stereochemical requirements of Escherichia coli ribonucleic acid polymerase. Interaction with conformationally restricted ribonucleoside 5'-triphosphates: 8-bromoguanosine, 8-ketoguanosine, and 6-methylcytidine triphosphates. Biochemistry. 1971 Oct 26;10(22):4050–4061. doi: 10.1021/bi00798a007. [DOI] [PubMed] [Google Scholar]
  12. May J. A., Townsend L. B. A general synthesis of 4-substituted 1-(beta-D-ribofuranosyl) imidazo-[4, 5-c] pyridines. J Chem Soc Perkin 1. 1975;(2):125–129. [PubMed] [Google Scholar]
  13. Miles D. W., Hahn S. J., Robins R. K., Robins M. J., Eyring H. Vicinal effects on the optical activity of some adenine nucleosides. J Phys Chem. 1968 May;72(5):1483–1491. doi: 10.1021/j100851a015. [DOI] [PubMed] [Google Scholar]
  14. Miles D. W., Inskeep W. H., Townsend L. B., Eyring H. Optical and conformational properties of the 7-(beta-D-ribofuranosyl)purines. Biopolymers. 1972;11(6):1181–1207. doi: 10.1002/bip.1972.360110606. [DOI] [PubMed] [Google Scholar]
  15. Miles D. W., Miles D. L., Eyring H. A molecular orbital study of the conformation of formycin. J Theor Biol. 1974 Jun;45(2):577–583. doi: 10.1016/0022-5193(74)90131-3. [DOI] [PubMed] [Google Scholar]
  16. Miles D. W., Robins M. J., Robins R. K., Eyring H. Circular dichroism of nucleoside derivatives. VI. The optically active bands of adenine nucleoside derivatives. Proc Natl Acad Sci U S A. 1969 Jan;62(1):22–29. doi: 10.1073/pnas.62.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Miles D. W., Townsend L. B., Robins M. J., Robins R. K., Inskeep W. H., Eyring H. Circular dichroism of nucleoside derivatives. X. Influence of solvents and substituents upon the Cotton effects of guanosine derivatives. J Am Chem Soc. 1971 Apr 7;93(7):1600–1608. doi: 10.1021/ja00736a006. [DOI] [PubMed] [Google Scholar]
  18. Milne G. H., Townsend L. B. Purine nucleosides. XXXII. Synthesis and reactivity of 6-alkylseleno-9-( -D-ribofuranosyl) purines. J Chem Soc Perkin 1. 1973;3:313–315. [PubMed] [Google Scholar]
  19. Montgomery J. A., Hewson K. 3-Deaza-6-methylthiopurine ribonucleoside. J Med Chem. 1966 Jan;9(1):105–107. doi: 10.1021/jm00319a026. [DOI] [PubMed] [Google Scholar]
  20. Ogilvie K. K., Slotin L., Rheault P. Novel substrate of adenosine deaminase. Biochem Biophys Res Commun. 1971 Oct 15;45(2):297–300. doi: 10.1016/0006-291x(71)90817-5. [DOI] [PubMed] [Google Scholar]
  21. Rousseau R. J., Townsend L. B., Robins R. K. The synthesis of 4-amino-beta-d-ribofuranosylimidazo[4,5-c]pyridine (3-deazaadenosine) and related nucleotides. Biochemistry. 1966 Feb;5(2):756–760. doi: 10.1021/bi00866a050. [DOI] [PubMed] [Google Scholar]
  22. Saenger W. Structure and function of nucleosides and nucleotides. Angew Chem Int Ed Engl. 1973 Aug;12(8):591–601. doi: 10.1002/anie.197305911. [DOI] [PubMed] [Google Scholar]
  23. Simon L. N., Bauer R. J., Tolman R. L., Robins R. K. Calf intestine adenosine deaminase. Substrate specificity. Biochemistry. 1970 Feb 3;9(3):573–577. doi: 10.1021/bi00805a018. [DOI] [PubMed] [Google Scholar]
  24. Voelter W., Records R., Bunnenberg E., Djerassi C. Magnetic circular dichroism studies. VI. Investigation of some purines, pyrimidines, and nucleosides. J Am Chem Soc. 1968 Oct 23;90(22):6163–6170. doi: 10.1021/ja01024a039. [DOI] [PubMed] [Google Scholar]
  25. ZAMECNIK P. C. Unsettled questions in the field of protein synthesis. Biochem J. 1962 Nov;85:257–264. doi: 10.1042/bj0850257. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES