Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Jul;73(7):2396–2400. doi: 10.1073/pnas.73.7.2396

Enhancement of postreplication repair in Chinese hamster cells.

S M D'Ambrosio, R B Setlow
PMCID: PMC430582  PMID: 1065893

Abstract

Alkaline sedimentation profiles of pulse-labeled DNA from Chinese hamster cells showed that DNA from cells treated with N-acetoxy-acetylaminofluorene or ultraviolet radiation was made in segments smaller than those from untreated cells. Cells treated with a small dose (2.5 muM) of N-acetoxy-acetylaminofluorene or (2.5 J-m-2) 254-nm radiation, several hours before a larger dose (7-10 muM) of N-acetoxy-acetylaminofluorene or 5.0 J.m-2 of 254 nm radiation, also synthesized small DNA after the second dose. However, the rate at which this small DNA was joined together into parental size was appreciably greater than in absence of the small dose. This enhancement of postreplication repair (as a result of the initial small dose) was not observed when cells were incubated with cycloheximide between the two treatments. The results suggest that N-acetoxy-acetylaminofluorene and ultraviolet-damaged DNA from Chinese hamster cells are repaired by similar postreplicative mechanisms that require de novo protein synthesis for enhancement.

Full text

PDF
2396

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buhl S. N., Regan J. D. Repair endonuclease-sensitive sites in daughter DNA of ultraviolet-irradiated human cells. Nature. 1973 Dec 21;246(5434):484–484. doi: 10.1038/246484a0. [DOI] [PubMed] [Google Scholar]
  2. Carrier W. L., Setlow R. B. Paper strip method for assaying gradient fractions containing radioactive macromolecules. Anal Biochem. 1971 Oct;43(2):427–432. doi: 10.1016/0003-2697(71)90272-7. [DOI] [PubMed] [Google Scholar]
  3. Cleaver J. E., Bootsma D. Xeroderma pigmentosum: biochemical and genetic characteristics. Annu Rev Genet. 1975;9:19–38. doi: 10.1146/annurev.ge.09.120175.000315. [DOI] [PubMed] [Google Scholar]
  4. Elkind M. M., Kamper C. Two forms of repair of DNA in mammalian cells following irradiation. Biophys J. 1970 Mar;10(3):237–245. doi: 10.1016/S0006-3495(70)86296-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Elkind M. M. Sedimentation of DNA released from Chinese hamster cells. Biophys J. 1971 Jun;11(6):502–520. doi: 10.1016/S0006-3495(71)86231-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ganesan A. K. Persistence of pyrimidine dimers during post-replication repair in ultraviolet light-irradiated Escherichia coli K12. J Mol Biol. 1974 Jul 25;87(1):103–119. doi: 10.1016/0022-2836(74)90563-4. [DOI] [PubMed] [Google Scholar]
  7. Gautschi J. R., Kern R. M. DNA replication in mammalian cells in the presence of cycloheximide. Exp Cell Res. 1973 Jul;80(1):15–26. doi: 10.1016/0014-4827(73)90270-x. [DOI] [PubMed] [Google Scholar]
  8. Goodman J. I., Trosko J. E., Yager J. D., Jr Studies on the mechanism of inhibition of 2-acetylaminofluorene toxicity by butylated hydroxytoluene. Chem Biol Interact. 1976 Feb;12(2):171–182. doi: 10.1016/0009-2797(76)90097-1. [DOI] [PubMed] [Google Scholar]
  9. Hart R. W., Setlow R. B. Correlation between deoxyribonucleic acid excision-repair and life-span in a number of mammalian species. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2169–2173. doi: 10.1073/pnas.71.6.2169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Higgins N. P., Kato K., Strauss B. A model for replication repair in mammalian cells. J Mol Biol. 1976 Mar 5;101(3):417–425. doi: 10.1016/0022-2836(76)90156-x. [DOI] [PubMed] [Google Scholar]
  11. Housman D., Huberman J. A. Changes in the rate of DNA replication fork movement during S phase in mammalian cells. J Mol Biol. 1975 May 15;94(2):173–181. doi: 10.1016/0022-2836(75)90076-5. [DOI] [PubMed] [Google Scholar]
  12. Iyer V. N., Rupp W. D. Usefulness of benzoylated naphthoylated DEAE-cellulose to distinguish and fractionate double-stranded DNA bearing different extents of single-stranded regions. Biochim Biophys Acta. 1971 Jan 1;228(1):117–126. doi: 10.1016/0005-2787(71)90551-x. [DOI] [PubMed] [Google Scholar]
  13. Lehmann A. R., Kirk-Bell S., Arlett C. F., Paterson M. C., Lohman P. H., de Weerd-Kastelein E. A., Bootsma D. Xeroderma pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV-irradiation. Proc Natl Acad Sci U S A. 1975 Jan;72(1):219–223. doi: 10.1073/pnas.72.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lehmann A. R. Postreplication repair of DNA in mammalian cells. Life Sci. 1974 Dec 15;15(12):2005–2016. doi: 10.1016/0024-3205(74)90018-6. [DOI] [PubMed] [Google Scholar]
  15. Painter R. B., Young B. R. X-ray-induced inhibition of DNA synthesis in Chinese hamster ovary, human HeLa, and Mouse L cells. Radiat Res. 1975 Dec;64(3):648–656. [PubMed] [Google Scholar]
  16. Palcic B., Skarsgard L. D. The effect of oxygen on DNA single-strand breaks produced by ionizing radiation in mammalian cells. Int J Radiat Biol Relat Stud Phys Chem Med. 1972 May;21(5):417–433. doi: 10.1080/09553007214550501. [DOI] [PubMed] [Google Scholar]
  17. Regan J. D., Setlow R. B. Two forms of repair in the DNA of human cells damaged by chemical carcinogens and mutagens. Cancer Res. 1974 Dec;34(12):3318–3325. [PubMed] [Google Scholar]
  18. Rupp W. D., Howard-Flanders P. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol. 1968 Jan 28;31(2):291–304. doi: 10.1016/0022-2836(68)90445-2. [DOI] [PubMed] [Google Scholar]
  19. Rupp W. D., Wilde C. E., 3rd, Reno D. L., Howard-Flanders P. Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli. J Mol Biol. 1971 Oct 14;61(1):25–44. doi: 10.1016/0022-2836(71)90204-x. [DOI] [PubMed] [Google Scholar]
  20. Sedgwick S. G. Genetic and kinetic evidence for different types of postreplication repair in Escherichia coli B. J Bacteriol. 1975 Jul;123(1):154–161. doi: 10.1128/jb.123.1.154-161.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sedgwick S. G. Inducible error-prone repair in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2753–2757. doi: 10.1073/pnas.72.7.2753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sedgwick S. G. Ultraviolet inducible protein associated with error prone repair in E. coli B. Nature. 1975 May 22;255(5506):349–350. doi: 10.1038/255349a0. [DOI] [PubMed] [Google Scholar]
  23. Setlow R. B., Regan J. D., German J., Carrier W. L. Evidence that xeroderma pigmentosum cells do not perform the first step in the repair of ultraviolet damage to their DNA. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1035–1041. doi: 10.1073/pnas.64.3.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Setlow R. B., Setlow J. K. Effects of radiation on polynucleotides. Annu Rev Biophys Bioeng. 1972;1:293–346. doi: 10.1146/annurev.bb.01.060172.001453. [DOI] [PubMed] [Google Scholar]
  25. Strauss B. S. Repair of DNA in mammalian cells. Life Sci. 1974 Nov 15;15(10):1685–1693. doi: 10.1016/0024-3205(74)90171-4. [DOI] [PubMed] [Google Scholar]
  26. TROSKO J. E., CHU E. H., CARRIER W. L. THE INDUCTION OF THYMINE DIMERS IN ULTRAVIOLET-IRRADIATED MAMMALIAN CELLS. Radiat Res. 1965 Apr;24:667–672. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES