Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Aug;73(8):2629–2633. doi: 10.1073/pnas.73.8.2629

Detection of different types of damage in alkylated DNA by means of human corrective endonuclease (correndonuclease).

N J Duker, G W Teebor
PMCID: PMC430701  PMID: 1066672

Abstract

Corrective endonuclease (correndunclease) activity of HeLa cells was assayed with alkylated DNA. Double-stranded, covalently closed DNA from phage PM II was treated with methyl methanesulfonate, N-methyl-N-nitrosourea, beta-propiolactone, or diepoxybutane to introduce alkylated bases and alkali-labile sites into the DNA. The damaged DNA was incubated with an extract of HeLa cells that catalyzes the formation of breaks at apurinic sites in double-stranded DNA. Methylated DNA was broken at every alkali-labile site by the HeLa correndonuclease, which indicated that these sites are similar to the apurinic sites produced by heating at acid pH. DNA alkylated with beta-propiolactone or diepoxybutane containing the same number of alkali-labile sites was broken to a far lesser extent. This indicates the presence of a second type of alkali-labile damage that is correndonuclease-insensitive.

Full text

PDF
2629

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROOKES P., LAWLEY P. D. EFFECTS OF ALKYLATING AGENTS ON T2 AND T4 BACTERIOPHAGES. Biochem J. 1963 Oct;89:138–144. doi: 10.1042/bj0890138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bacchetti S., Benne R. Purification and characterization of an endonuclease from calf thymus acting on irradiated DNA. Biochim Biophys Acta. 1975 May 16;390(3):285–297. doi: 10.1016/0005-2787(75)90349-4. [DOI] [PubMed] [Google Scholar]
  3. Brent T. P. A human endonuclease activity for gamma-irradiated DNA. Biophys J. 1973 Apr;13(4):399–401. doi: 10.1016/S0006-3495(73)85993-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brent T. P. Partial purification of endonuclease activity from human lymphoblasts. Separation of activities for depurinated DNA and DNA irradiated with ultraviolet light. Biochim Biophys Acta. 1975 Oct 1;407(2):191–199. doi: 10.1016/0005-2787(75)90284-1. [DOI] [PubMed] [Google Scholar]
  5. Brent T. P. Repair enzyme suggested by mammalian endonuclease activity specific for ultraviolet-irradiated DNA. Nat New Biol. 1972 Oct 11;239(93):172–173. doi: 10.1038/newbio239172a0. [DOI] [PubMed] [Google Scholar]
  6. Böttger M., Kuhn W. Sedimentation analysis of conformation changes of circular PM 2 DNA in relation to the ionic strength. Biochim Biophys Acta. 1971 Dec 30;254(3):407–411. doi: 10.1016/0005-2787(71)90872-0. [DOI] [PubMed] [Google Scholar]
  7. Clarkson J. M., Evans H. J. Unscheduled DNA synthesis in human leucocytes after exposure to UV light, -rays and chemical mutagens. Mutat Res. 1972 Apr;14(4):413–430. doi: 10.1016/0027-5107(72)90139-x. [DOI] [PubMed] [Google Scholar]
  8. Cleaver J. E. Repair of alkylation damage in ultraviolet-sensitive (xeroderma pigmentosum) human cells. Mutat Res. 1971 Aug;12(4):453–462. doi: 10.1016/0027-5107(71)90095-9. [DOI] [PubMed] [Google Scholar]
  9. Colburn N. H., Boutwell R. K. The in vivo binding of beta-propiolactone to mouse skin DNA, RNA, and protein. Cancer Res. 1968 Apr;28(4):642–652. [PubMed] [Google Scholar]
  10. Duker N. J., Teebor G. W. Different ultraviolet DNA endonuclease activity in human cells. Nature. 1975 May 1;255(5503):82–84. doi: 10.1038/255082a0. [DOI] [PubMed] [Google Scholar]
  11. Espejo R. T., Canelo E. S. Properties of bacteriophage PM2: a lipid-containing bacterial virus. Virology. 1968 Apr;34(4):738–747. doi: 10.1016/0042-6822(68)90094-9. [DOI] [PubMed] [Google Scholar]
  12. Espejo R. T., Canelo E. S., Sinsheimer R. L. DNA of bacteriophage PM2: a closed circular double-stranded molecule. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1164–1168. doi: 10.1073/pnas.63.4.1164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grossman L., Braun A., Feldberg R., Mahler I. Enzymatic repair of DNA. Annu Rev Biochem. 1975;44:19–43. doi: 10.1146/annurev.bi.44.070175.000315. [DOI] [PubMed] [Google Scholar]
  14. Kirtikar D. M., Goldthwait D. A. The enzymatic release of O6-methylguanine and 3-methyladenine from DNA reacted with the carcinogen N-methyl-N-nitrosourea. Proc Natl Acad Sci U S A. 1974 May;71(5):2022–2026. doi: 10.1073/pnas.71.5.2022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kohn K. W., Spears C. L., Doty P. Inter-strand crosslinking of DNA by nitrogen mustard. J Mol Biol. 1966 Aug;19(2):266–288. doi: 10.1016/s0022-2836(66)80004-9. [DOI] [PubMed] [Google Scholar]
  16. Kohn K. W., Spears C. L. Stabilization of nitrogen-mustard alkylations and inter-strand cross-links in DNA by alkali. Biochim Biophys Acta. 1967;145(3):734–741. doi: 10.1016/0005-2787(67)90132-3. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Lawley P. D., Brookes P. Interstrand cross-linking of DNA by difunctional alkylating agents. J Mol Biol. 1967 Apr 14;25(1):143–160. doi: 10.1016/0022-2836(67)90285-9. [DOI] [PubMed] [Google Scholar]
  19. Levine E. M. A simplified method for the detection of mycoplasma. Methods Cell Biol. 1974;8(0):229–248. doi: 10.1016/s0091-679x(08)60453-7. [DOI] [PubMed] [Google Scholar]
  20. Lieberman M. W., Baney R. N., Lee R. E., Sell S., Farber E. Studies on DNA repair in human lymphocytes treated with proximate carcinogens and alkylating agents. Cancer Res. 1971 Sep;31(9):1297–1306. [PubMed] [Google Scholar]
  21. Lindahl T., Andersson A. Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid. Biochemistry. 1972 Sep 12;11(19):3618–3623. doi: 10.1021/bi00769a019. [DOI] [PubMed] [Google Scholar]
  22. Lindahl T. New class of enzymes acting on damaged DNA. Nature. 1976 Jan 1;259(5538):64–66. doi: 10.1038/259064a0. [DOI] [PubMed] [Google Scholar]
  23. Nelson G. J., Shore V. G. Characterization of the serum high density lipoprotein and apolipoproteins of pink salmon. J Biol Chem. 1974 Jan 25;249(2):536–542. [PubMed] [Google Scholar]
  24. Prakash L., Strauss B. Repair of alkylation damage: stability of methyl groups in Bacillus subtilis treated with methyl methanesulfonate. J Bacteriol. 1970 Jun;102(3):760–766. doi: 10.1128/jb.102.3.760-766.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rhaese H. J., Freese E. Chemical analysis of DNA alterations. IV. Reactions of oligodeoxynucleotides with monofunctional alkylating agents leading to backbone breakage. Biochim Biophys Acta. 1969 Oct 22;190(2):418–433. doi: 10.1016/0005-2787(69)90091-4. [DOI] [PubMed] [Google Scholar]
  26. Roberts J. J., Crathorn A. R., Brent T. P. Repair of alkylated DNA in mammalian cells. Nature. 1968 Jun 8;218(5145):970–972. doi: 10.1038/218970a0. [DOI] [PubMed] [Google Scholar]
  27. Strauss B., Hill T. The intermediate in the degradation of DNA alkylated with a monofunctional alkylating agent. Biochim Biophys Acta. 1970 Jul 16;213(1):14–25. doi: 10.1016/0005-2787(70)90003-1. [DOI] [PubMed] [Google Scholar]
  28. TAMM C., HODES M. E., CHARGAFF E. The formation apurinic acid from the desoxyribonucleic acid of calf thymus. J Biol Chem. 1952 Mar;195(1):49–63. [PubMed] [Google Scholar]
  29. TAMM C., SHAPIRO H. S., LIPSHITZ R., CHARGAFF E. Distribution density of nucleotides within a desoxyribonucleic acid chain. J Biol Chem. 1953 Aug;203(2):673–688. [PubMed] [Google Scholar]
  30. Teebor G. W., Duker N. J. Human endonuclease activity for DNA apurinic sites. Nature. 1975 Dec 11;258(5535):544–547. doi: 10.1038/258544a0. [DOI] [PubMed] [Google Scholar]
  31. Watson R., Bauer W., Vinograd J. An optical system for the photography of fluorescent bands in preparative ultracentrifuge tubes. Anal Biochem. 1971 Nov;44(1):200–206. doi: 10.1016/0003-2697(71)90361-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES