Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Aug;73(8):2692–2695. doi: 10.1073/pnas.73.8.2692

Dual role of Zn2+ as inhibitor and activator of fructose 1,6-bisphosphatase of rat liver.

G A Tejwani, F O Pedrosa, S Pontremoli, B L Horecker
PMCID: PMC430714  PMID: 8778

Abstract

At neutral pH, Zn2+ is a potent and specific inhibitor of rat liver fructose 1,6-bisphosphatase (EC 3.1.3.11; D-fructose-1,6-bisphosphate 1-phosphohydrolase). Inhibition by Zn2+ is uncompetitive with respect to the activating cations Mg2+ and Mn2+, and the kinetic data suggest that the enzyme possesses a distinct high-affinity binding site for Zn2+, with Ki of approximately 0.3 muM. At higher concentrations (about 10(-5) M) Zn2+, and to a lesser extent Co2+, function as activating cations. Binding studies show that the enzyme binds two equivalents of Zn2+ per subunit; one equivalent is partially displaced by Mg2+ and is presumably bound to the site for activating cations. A second equivalent binds to the high-affinity site, presumably identical to the inhibitory site. The results suggest that Zn2+ functions as an allosteric regulator, and that the commonly observed activation of fructose 1,6-bisphosphatase at neutral pH by EDTA, histidine, and other chelators is due to removal of endogenous Zn2+ by these agents.

Full text

PDF
2692

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Colowick S. P., Womack F. C. Binding of diffusible molecules by macromolecules: rapid measurement by rate of dialysis. J Biol Chem. 1969 Feb 25;244(4):774–777. [PubMed] [Google Scholar]
  2. Datta A. G., Abrams B., Sasaki T., van den Berg J. W., Pontremoli S., Horecker B. L. The activation of rabbit muscle, liver, and kidney fructose bisphosphatases by histidine and citrate. Arch Biochem Biophys. 1974 Dec;165(2):641–645. doi: 10.1016/0003-9861(74)90292-6. [DOI] [PubMed] [Google Scholar]
  3. Fu J. Y., Kemp R. G. Activation of muscle fructose 1,6-diphosphatase by creatine phosphate and citrate. J Biol Chem. 1973 Feb 10;248(3):1124–1125. [PubMed] [Google Scholar]
  4. Itaya K., Ui M. A new micromethod for the colorimetric determination of inorganic phosphate. Clin Chim Acta. 1966 Sep;14(3):361–366. doi: 10.1016/0009-8981(66)90114-8. [DOI] [PubMed] [Google Scholar]
  5. KREBS H. A., WOODFORD M. FRUCTOSE 1, 6-DIPHOSPHATASE IN STRIATED MUSCLE. Biochem J. 1965 Feb;94:436–445. doi: 10.1042/bj0940436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kirtley M. E., Dix J. C. Activation of fructose diphosphatase by manganese, magnesium and cobalt. Arch Biochem Biophys. 1971 Dec;147(2):647–652. doi: 10.1016/0003-9861(71)90423-1. [DOI] [PubMed] [Google Scholar]
  7. Nimmo H. G., Tipton K. F. The purification of fructose 1,6-diphosphatase from ox liver and its activation by ethylenediaminetetra-acetate. Biochem J. 1975 Feb;145(2):323–334. doi: 10.1042/bj1450323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Pogell B. M., Tanaka A., Siddons R. C. Natural activators for liver fructose 1,6-diphosphatase and the reversal of adenosine 5'-monophosphate inhibition by muscle phosphofructokinase. J Biol Chem. 1968 Apr 10;243(7):1356–1367. [PubMed] [Google Scholar]
  9. Pontremoli S., Melloni E., De Flora A., Horecker B. L. Regulation of fructose, 1,6-bisphosphatase by histidine under gluconeogenic conditions. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2166–2168. doi: 10.1073/pnas.71.6.2166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pontremoli S., Traniello S., Luppis B., Wood W. A. Fructose diphosphatase from rabbit liver. I. Purification and properties. J Biol Chem. 1965 Sep;240(9):3459–3463. [PubMed] [Google Scholar]
  11. Rosen O. M., Rosen S. M., Horecker B. L. Purification and properties of a specific fructose 1,6-diphosphatase from Candida utilis. Arch Biochem Biophys. 1965 Dec;112(3):411–420. doi: 10.1016/0003-9861(65)90073-1. [DOI] [PubMed] [Google Scholar]
  12. Rosenberg J. S., Tashima Y., Horecker B. L., Pontremoli S. Activation of rabbit kidney fructose diphosphatase by Mg-EDTA, Mn-EDTA and Co-EDTA complexes. Arch Biochem Biophys. 1973 Jan;154(1):283–291. doi: 10.1016/0003-9861(73)90059-3. [DOI] [PubMed] [Google Scholar]
  13. Tashima Y., Yoshimura N. Control of rabbit liver fructose-1, 6-diphosphatase activity by magnesium ions. J Biochem. 1975 Dec;78(6):1161–1169. doi: 10.1093/oxfordjournals.jbchem.a131012. [DOI] [PubMed] [Google Scholar]
  14. Traniello S., Melloni E., Pontremoli S., Sia C. L., Horecker R. L. Rabbit liver fructose 1,6-diphosphatase. Properties of the native enzyme and their modification by subtilisin. Arch Biochem Biophys. 1972 Mar;149(1):222–231. doi: 10.1016/0003-9861(72)90317-7. [DOI] [PubMed] [Google Scholar]
  15. UNDERWOOD A. H., NEWSHOLME E. A. SOME PROPERTIES OF FRUCTOSE 1,6-DIPHOSPHATASE OF RAT LIVER AND THEIR RELATION TO THE CONTROL OF GLUCONEOGENESIS. Biochem J. 1965 Jun;95:767–774. doi: 10.1042/bj0950767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Van Tol A., Black W. J., Horecker B. L. Activation of rabbit muscle fructose diphosphatase by EDTA and the effect of divalent cations. Arch Biochem Biophys. 1972 Aug;151(2):591–596. doi: 10.1016/0003-9861(72)90536-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES