Abstract
Both 1,N6-etheno-AMP and 1,N6-etheno-2'-deoxy-AMP bind at the AMP site of phosphorylase b (1,4-alpha-D-glucan:orthophosphate alpha-glucosyltransferase, EC 2.4.1.1). Etheno-AMP induces the same activation as AMP, about 30-fold higher than the activation induced by etheno-dAMP. The fluorescence of etheno-AMP and etheno-dAMP is associated with the base moiety; therefore, when free in solution, the two derivatives have identical fluorescence properties. However, when bound to phosphorylase, the fluorescence of etheno-AMP is quenched more efficiently than the fluorescence of etheno-dAMP. This difference between the fluorescence properties of the bound nucleotides suggests that a modification in the ribose ring affects the position of the adenine in the AMP site of phosphorylase b. The observed quenching may be due to a stacking interaction between an aromatic residue and the base moiety of the bound nucleotide.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Birkett D. J., Dwek R. A., Radda G. K., Richards R. E., Salmon A. G. Probes for the conformational transitions of phosphorylase b. Effect of ligands studied by proton relaxation enhancement, fluorescence and chemical reactivities. Eur J Biochem. 1971 Jun 29;20(4):494–508. doi: 10.1111/j.1432-1033.1971.tb01419.x. [DOI] [PubMed] [Google Scholar]
- Black W. J., Wang J. H. Studies on the allosteric activation of glycogen phosphorylase b by Nucleotides. I. Activation of phosphorylase b by inosine monophosphate. J Biol Chem. 1968 Nov 25;243(22):5892–5898. [PubMed] [Google Scholar]
- Gruber B. A., Leonard N. J. Dynamic and static quenching of 1,N6-ethenoadenine fluorescence in nicotinamide 1,N6-ethenoadenine dinucleotide and in 1,N6-etheno-9-(3-(indol-3-yl) propyl) adenine. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3966–3969. doi: 10.1073/pnas.72.10.3966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HELMREICH E., CORI C. F. THE ROLE OF ADENYLIC ACID IN THE ACTIVATION OF PHOSPHORYLASE. Proc Natl Acad Sci U S A. 1964 Jan;51:131–138. doi: 10.1073/pnas.51.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KREBS E. G., LOVE D. S., BRATVOLD G. E., TRAYSER K. A., MEYER W. L., FISCHER E. H. PURIFICATION AND PROPERTIES OF RABBIT SKELETAL MUSCLE PHOSPHORYLASE B KINASE. Biochemistry. 1964 Aug;3:1022–1033. doi: 10.1021/bi00896a003. [DOI] [PubMed] [Google Scholar]
- MYER Y. P., SCHELLMAN J. A. The interaction of ribonuclease with purine and pyrimidine phosphates. I. Binding of adenosine 5'-monophosphate to ribonuclease. Biochim Biophys Acta. 1962 Mar 5;55:361–373. doi: 10.1016/0006-3002(62)90791-6. [DOI] [PubMed] [Google Scholar]
- Morange M., Blanco F. G., Vandenbunder B., Buc H. AMP analogs: their function in the activation of glycogen phosphorylase b. Eur J Biochem. 1976 Jun 1;65(2):553–563. doi: 10.1111/j.1432-1033.1976.tb10373.x. [DOI] [PubMed] [Google Scholar]
- Okazaki T., Nakazawa A., Hayaishi O. Studies on the interaction between regulatory enzymes and effectors. II. Effect of adenosine 5'-monophosphate analogues on glycogen phosphorylase B. J Biol Chem. 1968 Oct 25;243(20):5266–5271. [PubMed] [Google Scholar]
- Secrist J. A., 3rd, Barrio J. R., Leonard N. J., Weber G. Fluorescent modification of adenosine-containing coenzymes. Biological activities and spectroscopic properties. Biochemistry. 1972 Sep 12;11(19):3499–3506. doi: 10.1021/bi00769a001. [DOI] [PubMed] [Google Scholar]
- Steiner R. F. The activity of -adenosine derivatives as allosteric modifiers of phosphorylase b. FEBS Lett. 1972 Jun 15;23(2):139–141. doi: 10.1016/0014-5793(72)80324-7. [DOI] [PubMed] [Google Scholar]
