Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Aug;73(8):2706–2710. doi: 10.1073/pnas.73.8.2706

Myosin-mediated Ca++-regulation of actomyosin-adenosinetriphosphatase from porcine aorta.

D W Frederiksen
PMCID: PMC430717  PMID: 134373

Abstract

The nature of the Ca++-sensitive regulatory system for contraction of vascular smooth muscle is considered in detail. Smooth muscle actomyosin prepared from the medial layer of porcine aorta is analyzed chemically and its ATPase (adenosinetriphosphatase, EC 3.6.1.14) activities are investigated. The Mg++-ATPase of this vascular actomyosin is sensitive to the concentration of calcium in the range from 0.1 mM to 10 nM. The calcium sensitivity is maintained in the presence of excess pure actin from skeletal muscle and is abolished in the presence of pure skeletal myosin. It is concluded that the regulatory properties of this natural actomyosin from smooth muscle are in the myosin portion of the protein complex and are not bound to actin-tropomyosin as in skeletal muscle.

Full text

PDF
2706

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bremel R. D. Myosin linked calcium regulation in vertebrate smooth muscle. Nature. 1974 Nov 29;252(5482):405–407. doi: 10.1038/252405a0. [DOI] [PubMed] [Google Scholar]
  2. Carsten M. E. Uterine smooth muscle: troponin. Arch Biochem Biophys. 1971 Nov;147(1):353–357. doi: 10.1016/0003-9861(71)90346-8. [DOI] [PubMed] [Google Scholar]
  3. Driska S., Hartshorne D. J. The contractile proteins of smooth muscle. Properties and components of a Ca2+-sensitive actomyosin from chicken gizzard. Arch Biochem Biophys. 1975 Mar;167(1):203–212. doi: 10.1016/0003-9861(75)90457-9. [DOI] [PubMed] [Google Scholar]
  4. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  5. Frederiksen D. W., Holtzer A. The substructure of the myosin molecule. Production and properties of the alkali subunits. Biochemistry. 1968 Nov;7(11):3935–3950. doi: 10.1021/bi00851a022. [DOI] [PubMed] [Google Scholar]
  6. Gillis J. M., O'Brien E. J. The effect of calcium ions on the structure of reconstituted muscle thin filaments. J Mol Biol. 1975 Dec 15;99(3):445–459. doi: 10.1016/s0022-2836(75)80137-9. [DOI] [PubMed] [Google Scholar]
  7. Haselgrove J. C. X-ray evidence for conformational changes in the myosin filaments of vertebrate striated muscle. J Mol Biol. 1975 Feb 15;92(1):113–143. doi: 10.1016/0022-2836(75)90094-7. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Morimoto K., Harrington W. F. Evidence for structural changes in vertebrate thick filaments induced by calcium. J Mol Biol. 1974 Sep 25;88(3):693–709. doi: 10.1016/0022-2836(74)90417-3. [DOI] [PubMed] [Google Scholar]
  10. Mrwa U., Rüegg J. C. Myosin-linked calcium regulation in vascular smooth muscle. FEBS Lett. 1975 Dec 1;60(1):81–84. doi: 10.1016/0014-5793(75)80423-6. [DOI] [PubMed] [Google Scholar]
  11. O'Brien E. J., Gillis J. M., Couch J. Symmetry and molecular arrangement in paracrystals of reconstituted muscle thin filaments. J Mol Biol. 1975 Dec 15;99(3):461–475. doi: 10.1016/s0022-2836(75)80138-0. [DOI] [PubMed] [Google Scholar]
  12. Pollard T. D., Weihing R. R. Actin and myosin and cell movement. CRC Crit Rev Biochem. 1974 Jan;2(1):1–65. doi: 10.3109/10409237409105443. [DOI] [PubMed] [Google Scholar]
  13. Puszkin S., Kochwa S. Regulation of neurotransmitter release by a complex of actin with relaxing protein isolated from rat brain synaptosomes. J Biol Chem. 1974 Dec 10;249(23):7711–7714. [PubMed] [Google Scholar]
  14. Russell W. E. Insolubilization and activation of arterial actomyosin by bivalent cations. Eur J Biochem. 1973 Mar 15;33(3):459–466. doi: 10.1111/j.1432-1033.1973.tb02703.x. [DOI] [PubMed] [Google Scholar]
  15. Sands H. Actomyosin isolated from bovine tracheal smooth muscle. Proc Soc Exp Biol Med. 1975 Nov;150(2):299–302. doi: 10.3181/00379727-150-39023. [DOI] [PubMed] [Google Scholar]
  16. Sobieszek A., Bremel R. D. Preparation and properties of vertebrate smooth-muscle myofibrils and actomyosin. Eur J Biochem. 1975 Jun 16;55(1):49–60. doi: 10.1111/j.1432-1033.1975.tb02137.x. [DOI] [PubMed] [Google Scholar]
  17. Sobieszek A., Small J. V. Myosin-linked calcium regulation in vertebrate smooth muscle. J Mol Biol. 1976 Mar 25;102(1):75–92. doi: 10.1016/0022-2836(76)90074-7. [DOI] [PubMed] [Google Scholar]
  18. Sparrow M. P., Maxwell L. C., Ruegg J. C., Bohr D. F. Preparation and properties of a calcium ion-sensitive actomyosin from arteries. Am J Physiol. 1970 Nov;219(5):1366–1372. doi: 10.1152/ajplegacy.1970.219.5.1366. [DOI] [PubMed] [Google Scholar]
  19. Sparrow M. P., van Bockxmeer F. M. Arterial tropomyosin and a relaxing protein fraction from vascular smooth muscle. Comparison with skeletal tropomyosin and troponin. J Biochem. 1972 Nov;72(5):1075–1080. doi: 10.1093/oxfordjournals.jbchem.a129993. [DOI] [PubMed] [Google Scholar]
  20. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  21. Szent-Györgyi A. G. Calcium regulation of muscle contraction. Biophys J. 1975 Jul;15(7):707–723. doi: 10.1016/S0006-3495(75)85849-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weber A., Murray J. M. Molecular control mechanisms in muscle contraction. Physiol Rev. 1973 Jul;53(3):612–673. doi: 10.1152/physrev.1973.53.3.612. [DOI] [PubMed] [Google Scholar]
  23. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  24. Williamson B., Coniglio J. G. The effects of pyridoxine deficiency and of caloric restriction on lipids in the developing rat brain. J Neurochem. 1971 Feb;18(2):267–276. doi: 10.1111/j.1471-4159.1971.tb00565.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES