Abstract
Unlike the normal liver, numerous transplantable rodent and human hepatomas are unable to alter their rate of sterol synthesis and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-GoA) reductase [mevalonate: NADP+ oxidoreductase (CoA-acylating), EC 1.1.1.34] activity in response to a dietary cholesterol challenge. It has been suggested that this metabolic defect is linked to the process of malignant transformation. Hepatoma 7288C "lacks" feedback regulation of cholesterol synthesis when grown in vivo but expresses this regulatory property when grown in vitro (then called HTC). Therefore, it was used as a model system to answer whether an established hepatoma cell line that modulates its rate of cholesterol synthesis in vitro can express this property when grown in vivo, and whether cells reisolated from the tumor mass have the same regulatory phenotype as before transplantation. Our results show that long-term growth of hepatoma 7288C in tissue culture has not caused a biotransformation that permits feedback regulation of HMG-CoA reductase when the cells are transplanted back into host animals. In addition, HTC cells reisolated from the tumor mass and established in tissue culture continue to have the ability to regulate HMG-CoA reductase activity. Therefore, malignant transformation is not categorically linked to the loss of the cellular components necessary to regulate sterol synthesis and HMG-CoA reductase activity.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BAKER N., CHAIKOFF I. L., SCHUSDEK A. Effect of fructose on lipogenesis from lactate and acetate in diabetic liver. J Biol Chem. 1952 Jan;194(1):435–443. [PubMed] [Google Scholar]
- Brown M. S., Dana S. E., Goldstein J. L. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem. 1974 Feb 10;249(3):789–796. [PubMed] [Google Scholar]
- Brown M. S., Dana S. E., Goldstein J. L. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts by lipoproteins. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2162–2166. doi: 10.1073/pnas.70.7.2162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown M. S., Goldstein J. L. Receptor-mediated control of cholesterol metabolism. Science. 1976 Jan 16;191(4223):150–154. doi: 10.1126/science.174194. [DOI] [PubMed] [Google Scholar]
- DAY E. D. VASCULAR RELATIONSHIPS OF TUMOR AND HOST. Prog Exp Tumor Res. 1964;4:57–97. doi: 10.1159/000385974. [DOI] [PubMed] [Google Scholar]
- Goldstein J. L., Dana S. E., Faust J. R., Beaudet A. L., Brown M. S. Role of lysosomal acid lipase in the metabolism of plasma low density lipoprotein. Observations in cultured fibroblasts from a patient with cholesteryl ester storage disease. J Biol Chem. 1975 Nov 10;250(21):8487–8495. [PubMed] [Google Scholar]
- Harry D. S., Morris H. P., McIntyre N. Cholesterol biosynthesis in transplantable hepatomas: evidence for impairment of uptake and storage of dietary cholesterol. J Lipid Res. 1971 May;12(3):313–317. [PubMed] [Google Scholar]
- Heller R. A., Gould R. G. Solubilization and partial purification of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase. Biochem Biophys Res Commun. 1973 Feb 5;50(3):859–865. doi: 10.1016/0006-291x(73)91324-7. [DOI] [PubMed] [Google Scholar]
- Horton B. J., Mott G. E., Pitot H. C., Goldarb S. Rapid uptake of dietary cholesterol by hyperplastic liver nodules and primary hepatomas. Cancer Res. 1973 Mar;33(3):460–464. [PubMed] [Google Scholar]
- Kandutsch A. A., Chen H. W. Inhibition of sterol synthesis in cultured mouse cells by 7alpha-hydroxycholesterol, 7beta-hydroxycholesterol, and 7-ketocholesterol. J Biol Chem. 1973 Dec 25;248(24):8408–8417. [PubMed] [Google Scholar]
- Kirsten E. S., Watson J. A. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in hepatoma tissue culture cells by serum lipoproteins. J Biol Chem. 1974 Oct 10;249(19):6104–6109. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Nervi F. O., Weis H. J., Dietschy J. M. The kinetic characteristics of inhibition of hepatic cholesterogenesis by lipoproteins of intestinal origin. J Biol Chem. 1975 Jun 10;250(11):4145–4151. [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- SIPERSTEIN M. D., FAGAN V. M. DELETION OF THE CHOLESTEROL-NEGATIVE FEEDBACK SYSTEM IN LIVER TUMORS. Cancer Res. 1964 Aug;24:1108–1115. [PubMed] [Google Scholar]
- Shapiro D. J., Nordstrom J. L., Mitschelen J. J., Rodwell V. W., Schimke R. T. Micro assay for 3-hydroxy-3-methylglutaryl-CoA reductase in rat liver and in L-cell fibroblasts. Biochim Biophys Acta. 1974 Dec 29;370(2):369–377. doi: 10.1016/0005-2744(74)90098-9. [DOI] [PubMed] [Google Scholar]
- Siperstein M. D., Fagan V. M., Morris H. P. Further studies on the deletion of the cholesterol feedback system in hepatomas. Cancer Res. 1966 Jan;26(1):7–11. [PubMed] [Google Scholar]
- Siperstein M. D., Gyde A. M., Morris H. P. Loss of feedback control of hydroxymethylglutaryl coenzyme A reductase in hepatomas. Proc Natl Acad Sci U S A. 1971 Feb;68(2):315–317. doi: 10.1073/pnas.68.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomkins G. M., Levinson B. B., Baxter J. D., Dethlefsen L. Further evidence for posttranscriptional control of inducible tyrosine aminotransferase synthesis in cultured hepatoma cells. Nat New Biol. 1972 Sep 6;239(88):9–14. doi: 10.1038/newbio239009a0. [DOI] [PubMed] [Google Scholar]
- Van Potter R., Reynolds R. D., Watanabe M., Pitot H. C., Morris H. P. Induction of a previously non-inducible enzyme in Morris hepatoma 9618A. Adv Enzyme Regul. 1970;8:299–310. doi: 10.1016/0065-2571(70)90025-7. [DOI] [PubMed] [Google Scholar]


