Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Aug;73(8):2793–2797. doi: 10.1073/pnas.73.8.2793

Transfer of tRNAs to somatic cells mediated by Sendai-virus-induced fusion.

K Kaltoft, J Zeuthen, F Engbaek, P W Piper, J E Celis
PMCID: PMC430748  PMID: 183211

Abstract

tRNAs from yeast (tRNAPhe and 4S RNA) and Escherichia coli (suIII+ tRNAITyr) have been transferred to mouse cells by means of a two-step transfer procedure [Loyter, Zakai, and Kulka (1975) J. Cell Biol. 66, 292-304; Schlegel and Rechsteiner (1975) Cell 5, 371-379]. In the first stage of the transfer tRNAs were incorporated into rabbit red blood cells (RBCs). Thereafter, the loaded erythrocytes were fused with recipient mouse cells by means of Sendai virus. At least 0.3-0.4% of the total input of tRNA used to load the RBCs could be transferred to mouse cells. Of the tRNA incorporated in the mouse cells, at least 50% could be recovered in the form of intact tRNA molecules when yeast 4S RNA was used. With E. coli suIII+ tRNAITyr a rather smaller proportion of the tRNA remained intact (33%). Although the loading of tRNA into RBCs is not essential for its uptake, we find that the transfer is four times more efficient with RBCs as a vehicle for the injection. Significantly, a fraction (2%) of the recipient cells possessed much more incorporated tRNA than the average cell when Sendai virus and loaded RBCs were used. Such cells were not found in control experiments in which tRNA uptake was induced by Sendai virus alone.

Full text

PDF
2793

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abelson J. N., Gefter M. L., Barnett L., Landy A., Russell R. L., Smith J. D. Mutant tyrosine transfer ribonucleic acids. J Mol Biol. 1970 Jan 14;47(1):15–28. doi: 10.1016/0022-2836(70)90398-0. [DOI] [PubMed] [Google Scholar]
  2. Allende C. C., Allende J. E., Firtel R. A. The degradation of ribonucleic acids injected into Xenopus laevis oocytes. Cell. 1974 Jul;2(3):189–196. doi: 10.1016/0092-8674(74)90093-2. [DOI] [PubMed] [Google Scholar]
  3. Anderson K. W., Smith J. D. Still more mutant tyrosine transfer ribonucleic acids. J Mol Biol. 1972 Aug 28;69(3):349–356. doi: 10.1016/0022-2836(72)90249-5. [DOI] [PubMed] [Google Scholar]
  4. Batey I. L., Brown D. M. The selective iodination of yeast phenylalanine transfer RNA with 125-I. Mol Biol Rep. 1975 Mar;2(1):65–72. doi: 10.1007/BF00357299. [DOI] [PubMed] [Google Scholar]
  5. Brownlee G. G., Sanger F. Nucleotide sequences from the low molecular weight ribosomal RNA of Escherichia coli. J Mol Biol. 1967 Feb 14;23(3):337–353. doi: 10.1016/s0022-2836(67)80109-8. [DOI] [PubMed] [Google Scholar]
  6. Cowan N. J., Secher D. S., Milstein C. Intracellular immunoglobulin chain synthesis in non-secreting variants of a mouse myeloma: detection of inactive light-chain messenger RNA. J Mol Biol. 1974 Dec 25;90(4):691–701. doi: 10.1016/0022-2836(74)90533-6. [DOI] [PubMed] [Google Scholar]
  7. Epstein H. F., Waterston R. H., Brenner S. A mutant affecting the heavy chain of myosin in Caenorhabditis elegans. J Mol Biol. 1974 Dec 5;90(2):291–300. doi: 10.1016/0022-2836(74)90374-x. [DOI] [PubMed] [Google Scholar]
  8. Feldherr C. M. A comparative study of nucleocytoplasmic interactions. J Cell Biol. 1969 Sep;42(3):841–845. doi: 10.1083/jcb.42.3.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gatica M., Tarragó A., Allende C. C., Allende J. E. Aminoacylation of transfer RNA microinjected into Xenopus laevis oocytes. Nature. 1975 Aug 21;256(5519):675–678. doi: 10.1038/256675a0. [DOI] [PubMed] [Google Scholar]
  10. Giles R. E., Ruddle F. H. Production of Sendai virus for cell fusion. In Vitro. 1973 Sep-Oct;9(2):103–107. doi: 10.1007/BF02616007. [DOI] [PubMed] [Google Scholar]
  11. Gurdon J. B., Lane C. D., Woodland H. R., Marbaix G. Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature. 1971 Sep 17;233(5316):177–182. doi: 10.1038/233177a0. [DOI] [PubMed] [Google Scholar]
  12. Herrera F., Adamson R. H., Gallo R. C. Uptake of transfer ribonucleic acid by normal and leukemic cells. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1943–1950. doi: 10.1073/pnas.67.4.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ihler G. M., Glew R. H., Schnure F. W. Enzyme loading of erythrocytes. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2663–2666. doi: 10.1073/pnas.70.9.2663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. KIT S., DUBBS D. R., PIEKARSKI L. J., HSU T. C. DELETION OF THYMIDINE KINASE ACTIVITY FROM L CELLS RESISTANT TO BROMODEOXYURIDINE. Exp Cell Res. 1963 Aug;31:297–312. doi: 10.1016/0014-4827(63)90007-7. [DOI] [PubMed] [Google Scholar]
  15. Kuehl W. M., Scharff M. D. Synthesis of a carboxyl-terminal (constant region) fragment of the immunoglobulin light chain by a mouse myeloma cell line. J Mol Biol. 1974 Nov 5;89(3):409–421. doi: 10.1016/0022-2836(74)90472-0. [DOI] [PubMed] [Google Scholar]
  16. Lane C. D., Marbaix G., Gurdon J. B. Rabbit haemoglobin synthesis in frog cells: the translation of reticulocyte 9 s RNA in frog oocytes. J Mol Biol. 1971 Oct 14;61(1):73–91. doi: 10.1016/0022-2836(71)90207-5. [DOI] [PubMed] [Google Scholar]
  17. Loyter A., Zakai N., Kulka R. G. "Ultramicroinjection" of macromolecules or small particles into animal cells. A new technique based on virus-induced cell fusion. J Cell Biol. 1975 Aug;66(2):292–304. doi: 10.1083/jcb.66.2.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Moar V. A., Gurdon J. B., Lane C. D., Marbaix G. Translational capacity of living frog eggs and oocytes, as judged by messenger RNA injection. J Mol Biol. 1971 Oct 14;61(1):93–103. doi: 10.1016/0022-2836(71)90208-7. [DOI] [PubMed] [Google Scholar]
  19. Peacock A. C., Dingman C. W. Resolution of multiple ribonucleic acid species by polyacrylamide gel electrophoresis. Biochemistry. 1967 Jun;6(6):1818–1827. doi: 10.1021/bi00858a033. [DOI] [PubMed] [Google Scholar]
  20. Rechsteiner M. C. Uptake of proteins by red blood cells. Exp Cell Res. 1975 Jul;93(2):487–492. doi: 10.1016/0014-4827(75)90478-4. [DOI] [PubMed] [Google Scholar]
  21. Rubin G. M. The nucleotide sequence of Saccharomyces cerevisiae 5.8 S ribosomal ribonucleic acid. J Biol Chem. 1973 Jun 10;248(11):3860–3875. [PubMed] [Google Scholar]
  22. Sanger F., Brownlee G. G., Barrell B. G. A two-dimensional fractionation procedure for radioactive nucleotides. J Mol Biol. 1965 Sep;13(2):373–398. doi: 10.1016/s0022-2836(65)80104-8. [DOI] [PubMed] [Google Scholar]
  23. Schlegel R. A., Rechsteiner M. C. Microinjection of thymidine kinase and bovine serum albumin into mammalian cells by fusion with red blood cells. Cell. 1975 Aug;5(4):371–379. doi: 10.1016/0092-8674(75)90056-2. [DOI] [PubMed] [Google Scholar]
  24. Smith J. D., Barnett L., Brenner S., Russell R. L. More mutant tyrosine transfer ribonucleic acids. J Mol Biol. 1970 Nov 28;54(1):1–14. doi: 10.1016/0022-2836(70)90442-0. [DOI] [PubMed] [Google Scholar]
  25. Summers W. P., Wagner M., Summers W. C. Possible peptide chain termination mutants in thymide kinase gene of a mammalian virus, herpes simplex virus. Proc Natl Acad Sci U S A. 1975 Oct;72(10):4081–4084. doi: 10.1073/pnas.72.10.4081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tanaka K., Sekiguchi M., Okada Y. Restoration of ultraviolet-induced unscheduled DNA synthesis of xeroderma pigmentosum cells by the concomitant treatment with bacteriophage T4 endonuclease V and HVJ (Sendai virus). Proc Natl Acad Sci U S A. 1975 Oct;72(10):4071–4075. doi: 10.1073/pnas.72.10.4071. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES