Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Aug;73(8):2828–2832. doi: 10.1073/pnas.73.8.2828

Recombination in Saccharomyces cerevisiae: a DNA repair mutation associated with elevated mitotic gene conversion.

W R Boram, H Roman
PMCID: PMC430764  PMID: 785473

Abstract

A mutant haploid strain of Saccharomyces cerevisiae has been isolated that is sensitive to the alkylating agent methyl methanesulfonate at a concentration of 0.01% (vol/vol). The strain also shows sensitivities to x-rays and ultra-violet light, which cosegregate with sensitivity to methyl methanesulfonate as a single gene defect. An analysis of the sensitivity to ultraviolet light indicates that the mutation interferes with the excision of pyrimidine dimers. Diploids homozygous for the mutant gene exhibit elevated frequencies of spontaneous mitotic recombination at the ade6 locus. The results indicate that all the events are due to gene conversion. Mitotic recombination was also found to be elevated for three loci other than ade6. Thus, the recombinational effect seems not to be locus specific. Linkage and allelism tests indicate that the mutation is an allele of the known radiation-sensitive gene rad18. The various effects of this new rad18 allele (rad18-3) are discussed in terms of a defect in DNA repair mechanisms.

Full text

PDF
2828

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad A., Holloman W. K., Holliday R. Nuclease that preferentially inactivates DNA containing mismatched bases. Nature. 1975 Nov 6;258(5530):54–56. doi: 10.1038/258054a0. [DOI] [PubMed] [Google Scholar]
  2. BOYCE R. P., HOWARD-FLANDERS P. RELEASE OF ULTRAVIOLET LIGHT-INDUCED THYMINE DIMERS FROM DNA IN E. COLI K-12. Proc Natl Acad Sci U S A. 1964 Feb;51:293–300. doi: 10.1073/pnas.51.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Catcheside D. G. Fungal genetics. Annu Rev Genet. 1974;8:279–300. doi: 10.1146/annurev.ge.08.120174.001431. [DOI] [PubMed] [Google Scholar]
  4. Freifelder D. Mechanism of inactivation of coliphage T7 by x-rays. Proc Natl Acad Sci U S A. 1965 Jul;54(1):128–134. doi: 10.1073/pnas.54.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Holliday R. Altered recombination frequencies in radiation sensitivie strains of Ustilago. Mutat Res. 1967 May-Jun;4(3):275–288. doi: 10.1016/0027-5107(67)90022-x. [DOI] [PubMed] [Google Scholar]
  6. Holloman W. K., Wiegand R., Hoessli C., Radding C. M. Uptake of homologous single-stranded fragments by superhelical DNA: a possible mechanism for initiation of genetic recombination. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2394–2398. doi: 10.1073/pnas.72.6.2394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kaplan H. S. DNA-strand scission and loss of viability after x irradiation of normal and sensitized bacterial cells. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1442–1446. doi: 10.1073/pnas.55.6.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Khan N. A., Brendel M., Haynes R. H. Supersensitive double mutants in yeast. Mol Gen Genet. 1970;107(4):376–378. doi: 10.1007/BF00441200. [DOI] [PubMed] [Google Scholar]
  9. Konrad E. B., Lehman I. R. A conditional lethal mutant of Escherichia coli K12 defective in the 5' leads to 3' exonuclease associated with DNA polymerase I. Proc Natl Acad Sci U S A. 1974 May;71(5):2048–2051. doi: 10.1073/pnas.71.5.2048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lemontt J. F. Pathways of ultraviolet mutability in Saccharomyces cerevisiae. II. The effect of rev genes on recombination. Mutat Res. 1971 Dec;13(4):319–326. doi: 10.1016/0027-5107(71)90042-x. [DOI] [PubMed] [Google Scholar]
  11. Loprieno N., Clarke C. H. Investigations on reversions to methionine independence induced by mutagens in Schizosaccharomyces pombe. Mutat Res. 1965 Aug;2(4):312–319. doi: 10.1016/0027-5107(65)90065-5. [DOI] [PubMed] [Google Scholar]
  12. Luria S. E., Delbrück M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics. 1943 Nov;28(6):491–511. doi: 10.1093/genetics/28.6.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Meselson M. S., Radding C. M. A general model for genetic recombination. Proc Natl Acad Sci U S A. 1975 Jan;72(1):358–361. doi: 10.1073/pnas.72.1.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mortimer R. K., Hawthorne D. C. Genetic Mapping in Saccharomyces IV. Mapping of Temperature-Sensitive Genes and Use of Disomic Strains in Localizing Genes. Genetics. 1973 May;74(1):33–54. doi: 10.1093/genetics/74.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moustacchi E. Cytoplasmic and nuclear genetic events induced by UV light in strains of Saccharomyces cerevisiae with different UV sensitivities. Mutat Res. 1969 Mar-Apr;7(2):171–185. doi: 10.1016/0027-5107(69)90029-3. [DOI] [PubMed] [Google Scholar]
  16. Nakai S., Matsumoto S. Two types of radiation-sensitive mutant in yeast. Mutat Res. 1967 Mar-Apr;4(2):129–136. doi: 10.1016/0027-5107(67)90064-4. [DOI] [PubMed] [Google Scholar]
  17. PATRICK M. H., HAYNES R. H., URETZ R. B. DARK RECOVERY PHENOMENA IN YEAST. 1. COMPARATIVE EFFECTS WITH VARIOUS INACTIVATING AGENTS. Radiat Res. 1964 Jan;21:144–163. [PubMed] [Google Scholar]
  18. ROMAN H., JACOB F. A comparison of spontaneous and ultraviolet-induced allelic recombination with reference to the recombination of outside markers. Cold Spring Harb Symp Quant Biol. 1958;23:155–160. doi: 10.1101/sqb.1958.023.01.019. [DOI] [PubMed] [Google Scholar]
  19. Resnick M. A. Genetic control of radiation sensitivity in Saccharomyces cerevisiae. Genetics. 1969 Jul;62(3):519–531. doi: 10.1093/genetics/62.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Resnick M. A., Setlow J. K. Repair of pyrimidine dimer damage induced in yeast by ultraviolet light. J Bacteriol. 1972 Mar;109(3):979–986. doi: 10.1128/jb.109.3.979-986.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SETLOW R. B., CARRIER W. L. THE DISAPPEARANCE OF THYMINE DIMERS FROM DNA: AN ERROR-CORRECTING MECHANISM. Proc Natl Acad Sci U S A. 1964 Feb;51:226–231. doi: 10.1073/pnas.51.2.226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Snow R. Recombination in ultraviolet-sensitive strains of Saccharomyces cerevisiae. Mutat Res. 1968 Nov-Dec;6(3):409–418. doi: 10.1016/0027-5107(68)90058-4. [DOI] [PubMed] [Google Scholar]
  23. Spatz H. C., Trautner T. A. One way to do experiments on gene conversion? Transfection with heteroduplex SPP1 DNA. Mol Gen Genet. 1970;109(1):84–106. doi: 10.1007/BF00334048. [DOI] [PubMed] [Google Scholar]
  24. Wildenberg J., Meselson M. Mismatch repair in heteroduplex DNA. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2202–2206. doi: 10.1073/pnas.72.6.2202. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES