Abstract
Gene transfer between two closely related mouse cell lines has been carried out, using as the vector a cell-free preparation of metaphase chromosomes and nuclei. Distinction between gene transferents and revertants of the recipient mutant phenotype was achieved by the use of a donor strain carrying a mutationally altered (8-azaguanine-resistant) hypoxanthine-guanine phosphoribosyltransferase (HPRTase; IMP:pyrophosphate phosphoribosyltransferase, EC 2.4.2.8). The transferred HPRTase gene is initially unstable; in nonselective medium, it is lost at a rate of about 0.1 per cell per generation. Stabilization occurs as a rare event, with a frequency on the order of 1 X 10(-5) per cell per generation. The unstable state can be maintained for at least 200 generations through serial passages of the transferent in selective medium. Under the conditions of cultivation used in these experiments, the unstable HPRTase-positive cells are eventually replaced by the stable HPRTase-positive cells in the population.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bunn C. L., Wallace D. C., Eisenstadt J. M. Cytoplasmic inheritance of chloramphenicol resistance in mouse tissue culture cells. Proc Natl Acad Sci U S A. 1974 May;71(5):1681–1685. doi: 10.1073/pnas.71.5.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burch J. W., McBride O. W. Human gene expression in rodent cells after uptake of isolated metaphase chromosomes. Proc Natl Acad Sci U S A. 1975 May;72(5):1797–1801. doi: 10.1073/pnas.72.5.1797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes S. H., Wahl G. M., Capecchi M. R. Purification and characterization of mouse hypoxanthine-guanine phosphoribosyltransferase. J Biol Chem. 1975 Jan 10;250(1):120–126. [PubMed] [Google Scholar]
- LITTLEFIELD J. W. THREE DEGREES OF GUANYLIC ACID--INOSINIC ACID PYROPHOSPHORYLASE DEFICIENCY IN MOUSE FIBROBLASTS. Nature. 1964 Sep 12;203:1142–1144. doi: 10.1038/2031142a0. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Maio J. J., Schildkraut C. L. Isolated mammalian metaphase chromosomes. II. Fractionated chromosomes of mouse and Chinese hamster cells. J Mol Biol. 1969 Mar 14;40(2):203–216. doi: 10.1016/0022-2836(69)90469-0. [DOI] [PubMed] [Google Scholar]
- McBride O. W., Ozer H. L. Transfer of genetic information by purified metaphase chromosomes. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1258–1262. doi: 10.1073/pnas.70.4.1258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharp J. D., Capecchi N. E., Capecchi M. R. Altered enzymes in drug-resistant variants of mammalian tissue culture cells. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3145–3149. doi: 10.1073/pnas.70.11.3145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willecke K., Lange R., Krüger A., Reber T. Cotransfer of two linked human genes into cultured mouse cells. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1274–1278. doi: 10.1073/pnas.73.4.1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willecke K., Ruddle F. H. Transfer of the human gene for hypoxanthine-guanine phosphoribosyltransferase via isolated human metaphase chromosomes into mouse L-cells. Proc Natl Acad Sci U S A. 1975 May;72(5):1792–1796. doi: 10.1073/pnas.72.5.1792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wullems G. J., van der Horst J., Bootsma D. Incorporation of isolated chromosomes and induction of hypoxanthine phosphoribosyltransferase in Chinese hamster cells. Somatic Cell Genet. 1975 Apr;1(2):137–151. doi: 10.1007/BF01538544. [DOI] [PubMed] [Google Scholar]
- XEROS N. Deoxyriboside control and synchronization of mitosis. Nature. 1962 May 19;194:682–683. doi: 10.1038/194682a0. [DOI] [PubMed] [Google Scholar]