Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Aug;73(8):2852–2856. doi: 10.1073/pnas.73.8.2852

Increased ion permeability of planar lipid bilayer membranes after treatment with the C5b-9 cytolytic attack mechanism of complement.

D W Michaels, A S Abramovitz, C H Hammer, M M Mayer
PMCID: PMC430774  PMID: 1066698

Abstract

The ion permeability of planar lipid bilayers, as measured electrically, was found to increase modestly upon treatment with purified complement complex C5b,6 and complement components C7 and C8. The subsequent addition C9 greatly amplified this change. No permeability changes occurred when components were added individually to the membrane, or when they were used in paired combinations, or when C5b, C7, C8, and C9 were admixed prior to addition. Thus, there is a significant parallel between the permeability changes induced in the model membrane and damage produced in biological membranes by the C5b-9 complement attack sequence. The efficiency of membrane action by C5b-9 was critically dependent on the order in whcih components were added to the membrane. There were also differences in the electrical properties of membranes treated with C5b-8 and C5b-9, though in both cases the enhanced bilayer permeability is best attributed to the formation of trans-membrane channels. Collectively, the data are consistent with the hypothesis that the mechanism of membrane action by complement involves the production of a stable channel across the lipid bilayer, resulting in cell death by colloid-osmotic lysis.

Full text

PDF
2852

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker P. J., Rubin L. G., Lint T. F., McLeod B. C., Gewurz H. Binding of the complement intermediate C56 to zymosan in acute phase human sera. Clin Exp Immunol. 1975 Apr;20(1):113–124. [PMC free article] [PubMed] [Google Scholar]
  2. Barfort P., Arquilla E. R., Vogelhut P. O. Resistance changes in lipid bilayers: immunological applications. Science. 1968 Jun 7;160(3832):1119–1121. doi: 10.1126/science.160.3832.1119. [DOI] [PubMed] [Google Scholar]
  3. Dennis V. W., Stead N. W., Andreoli T. E. Molecular aspects of polyene- and sterol-dependent pore formation in thin lipid membranes. J Gen Physiol. 1970 Mar;55(3):375–400. doi: 10.1085/jgp.55.3.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eisenberg M., Hall J. E., Mead C. A. The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes. J Membr Biol. 1973 Dec 31;14(2):143–176. doi: 10.1007/BF01868075. [DOI] [PubMed] [Google Scholar]
  5. Goldman J. N., Austen K. F. Reaction mechanisms of nascent C567 (reactive lysis). II. Killing of a rough form of Escherichia coli by C567, C8, and C9. J Infect Dis. 1974 Apr;129(4):444–450. doi: 10.1093/infdis/129.4.444. [DOI] [PubMed] [Google Scholar]
  6. Goldman J. N., Ruddy S., Austen K. F. Reaction mechanisms of nascent C567 (reactive lysis). I. Reaction characteristics for production of EC567 and lysis by C8 and C9. J Immunol. 1972 Aug;109(2):353–359. [PubMed] [Google Scholar]
  7. Gordon L. G., Haydon D. A. The unit conductance channel of alamethicin. Biochim Biophys Acta. 1972 Mar 17;255(3):1014–1018. doi: 10.1016/0005-2736(72)90415-4. [DOI] [PubMed] [Google Scholar]
  8. Götze O., Müller-Eberhard H. J. Lysis of erythrocytes by complement in the absence of antibody. J Exp Med. 1970 Nov;132(5):898–915. doi: 10.1084/jem.132.5.898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hammer C. H., Nicholson A., Mayer M. M. On the mechanism of cytolysis by complement: evidence on insertion of C5b and C7 subunits of the C5b,6,7 complex into phospholipid bilayers of erythrocyte membranes. Proc Natl Acad Sci U S A. 1975 Dec;72(12):5076–5080. doi: 10.1073/pnas.72.12.5076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Haydon D. A., Hladky S. B. Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems. Q Rev Biophys. 1972 May;5(2):187–282. doi: 10.1017/s0033583500000883. [DOI] [PubMed] [Google Scholar]
  11. Jain M. K., White F. P., Strickholm A., Williams E., Cordes E. H. Studies concerning the possible reconstitution of an active cation pump across an artificial membrane. J Membr Biol. 1972;8(4):363–388. doi: 10.1007/BF01868111. [DOI] [PubMed] [Google Scholar]
  12. Kitamura H., Inai S. Molecular analysis of the reaction of C9 with EAC1-8: reaction of C9 with EAC1-8. J Immunol. 1974 Dec;113(6):1992–2003. [PubMed] [Google Scholar]
  13. Kolb W. P., Haxby J. A., Arroyave C. M., Müller-Eberhard H. J. Molecular analysis of the membrane attack mechanism of complement. J Exp Med. 1972 Mar 1;135(3):549–566. doi: 10.1084/jem.135.3.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lachmann P. J., Munn E. A., Weissmanng Complement-mediated lysis of liposomes produced by the reactive lysis procedure. Immunology. 1970 Dec;19(6):983–986. [PMC free article] [PubMed] [Google Scholar]
  15. Lachmann P. J., Thompson R. A. Reactive lysis: the complement-mediated lysis of unsensitized cells. II. The characterization of activated reactor as C56 and the participation of C8 and C9. J Exp Med. 1970 Apr 1;131(4):643–657. doi: 10.1084/jem.131.4.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mayer M. M. Mechanism of cytolysis by complement. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2954–2958. doi: 10.1073/pnas.69.10.2954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mayer M. M. The complement system. Sci Am. 1973 Nov;229(5):54–66. doi: 10.1038/scientificamerican1173-54. [DOI] [PubMed] [Google Scholar]
  18. Mayhew S. G., Howell L. G. Chromatography of proteins on diethylaminoethyl-cellulose in concentrated ammonium sulfate. Anal Biochem. 1971 Jun;41(2):466–470. doi: 10.1016/0003-2697(71)90166-7. [DOI] [PubMed] [Google Scholar]
  19. Muller R. U., Finkelstein A. Voltage-dependent conductance induced in thin lipid membranes by monazomycin. J Gen Physiol. 1972 Sep;60(3):263–284. doi: 10.1085/jgp.60.3.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rommel F. A., Mayer M. M. Studies of guinea pig complement component C9: reaction kinetics and evidence that lysis of EAC1-8 results from a single membrane lesion caused by one molecule of C9. J Immunol. 1973 Mar;110(3):637–647. [PubMed] [Google Scholar]
  21. Stolfi R. L. Immune lytic transformation: a state of irreversible damage generated as a result of the reaction of the eighth component in the guinea pig complement system. J Immunol. 1968 Jan;100(1):46–54. [PubMed] [Google Scholar]
  22. Tamura N., Shimada A., Chang S. Further evidence for immune cytolysis by antibody and the first eight components of complement in the absence of C9. Immunology. 1972 Jan;22(1):131–140. [PMC free article] [PubMed] [Google Scholar]
  23. Tamura N., Shimada A. The ninth component of guinea-pig complement. Isolation and identification as an alpha 2-globulin. Immunology. 1971 Mar;20(3):415–425. [PMC free article] [PubMed] [Google Scholar]
  24. Wipf H. K., Pache W., Jordan P., Zähner H., Keller-Schierlein W., Simon W. Mechanism of alkali cation transport in bulk membranes using macrotetrolide antibiotics. Biochem Biophys Res Commun. 1969 Aug 7;36(3):387–393. doi: 10.1016/0006-291x(69)90576-2. [DOI] [PubMed] [Google Scholar]
  25. Wobschall D., McKeon C. Step conductance increases in bilayer membranes induced by antibody-antigen-complement action. Biochim Biophys Acta. 1975 Dec 1;413(2):317–321. doi: 10.1016/0005-2736(75)90117-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES