Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Aug;73(8):2867–2871. doi: 10.1073/pnas.73.8.2867

Purine metabolism in adenosine deaminase deficiency.

G C Mills, F C Schmalstieg, K B Trimmer, A S Goldman, R M Goldblum
PMCID: PMC430780  PMID: 1066699

Abstract

Purine and pyrimidine metabolites were measured in erythrocytes, plasma, and urine of a 5-month-old infant with adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4) deficiency. Adenosine and adenine were measured using newly devised ion exchange separation techniques and a sensitive fluorescence assay. Plasma adenosine levels were increased, whereas adenosine was normal in erythrocytes and not detectable in urine. Increased amounts of adenine were found in erythrocytes and urine as well as in the plasma. Erythrocyte adenosine 5'-monophosphate and adenosine diphosphate concentrations were normal, but adenosine triphosphate content was greatly elevated. Because of the possibility of pyrimidine starvation, pyrimidine nucleotides (pyrimidine coenzymes) in erythrocytes and orotic acid in urine were measured. Pyrimidine nucleotide concentrations were normal, while orotic acid was not detected. These studies suggest that the immune deficiency associated with adenosine deaminase deficiency may be related to increased amounts of adenine, adenosine, or adenine nucleotides.

Full text

PDF
2867

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal R. P., Sagar S. M., Parks R. E., Jr Adenosine deaminase from human erythrocytes: purification and effects of adenosine analogs. Biochem Pharmacol. 1975 Mar 15;24(6):693–701. doi: 10.1016/0006-2952(75)90245-2. [DOI] [PubMed] [Google Scholar]
  2. Avigad G., Damle S. Fluorometric assay of adenine and its derivatives. Anal Biochem. 1972 Nov;50(1):321–323. doi: 10.1016/0003-2697(72)90511-8. [DOI] [PubMed] [Google Scholar]
  3. BROMBERG P. A., GUTMAN A. B., WEISSMANN B. The purine bases of human urine. II. Semiquantitative estimation and isotope incorporation. J Biol Chem. 1957 Jan;224(1):423–434. [PubMed] [Google Scholar]
  4. Barrio J. R., Secrist J. A., 3rd, Leonard N. J. Fluorescent adenosine and cytidine derivatives. Biochem Biophys Res Commun. 1972 Jan 31;46(2):597–604. doi: 10.1016/s0006-291x(72)80181-5. [DOI] [PubMed] [Google Scholar]
  5. Dissing J., Knudsen B. Adenosine-deaminase deficiency and combined immunodeficiency syndrome. Lancet. 1972 Dec 16;2(7790):1316–1316. doi: 10.1016/s0140-6736(72)92692-x. [DOI] [PubMed] [Google Scholar]
  6. Giblett E. R., Ammann A. J., Wara D. W., Sandman R., Diamond L. K. Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet. 1975 May 3;1(7914):1010–1013. doi: 10.1016/s0140-6736(75)91950-9. [DOI] [PubMed] [Google Scholar]
  7. Giblett E. R., Anderson J. E., Cohen F., Pollara B., Meuwissen H. J. Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet. 1972 Nov 18;2(7786):1067–1069. doi: 10.1016/s0140-6736(72)92345-8. [DOI] [PubMed] [Google Scholar]
  8. Green H., Chan T. Pyrimidine starvation induced by adenosine in fibroblasts and lymphoid cells: role of adenosine deaminase. Science. 1973 Nov 23;182(4114):836–837. doi: 10.1126/science.182.4114.836. [DOI] [PubMed] [Google Scholar]
  9. MILLS G. C. Cytidine and deoxycytidine nucleotides or erythrocytes. Tex Rep Biol Med. 1960;18:43–51. [PubMed] [Google Scholar]
  10. MILLS G. C. Uridine diphosphate glucose and uridine diphosphate n-acetyl-glucosamine in erythrocytes. Tex Rep Biol Med. 1960;18:446–454. [PubMed] [Google Scholar]
  11. Meuwissen H. J., Pollara B., Pickering R. J. Combined immunodeficiency disease associated with adenosine deaminase deficiency. Report on a workshop held in Albany, New York, October 1, 1973. J Pediatr. 1975 Feb;86(2):169–181. doi: 10.1016/s0022-3476(75)80463-x. [DOI] [PubMed] [Google Scholar]
  12. Mills G. C. Determination of vanilmandelic acid in urine by anion exchange analysis. Tex Rep Biol Med. 1965 Winter;23(4):752–761. [PubMed] [Google Scholar]
  13. OSKI F. A., NAIMAN J. L. RED CELL METABOLISM IN THE PREMATURE INFANT. I. ADENOSINE TRIPHOSPHATE LEVELS, ADENOSINE TRIPHOSPHATE STABILITY, AND GLUCOSE CONSUMPTION. Pediatrics. 1965 Jul;36:104–112. [PubMed] [Google Scholar]
  14. Ochs H. D., Yount J. E., Giblett E. R., Chen S. H., Scott C. R., Wedgwood R. J. Adenosine-deaminase deficiency and severe combined immunodeficiency syndrome. Lancet. 1973 Jun 16;1(7816):1393–1394. doi: 10.1016/s0140-6736(73)91725-x. [DOI] [PubMed] [Google Scholar]
  15. Parkman R., Gelfand E. W., Rosen F. S., Sanderson A., Hirschhorn R. Severe combined immunodeficiency and adenosine deaminase deficiency. N Engl J Med. 1975 Apr 3;292(14):714–719. doi: 10.1056/NEJM197504032921402. [DOI] [PubMed] [Google Scholar]
  16. Roth G. J., Moore G. L., Kline W. E., Poskitt T. R. The renal effect of intravenous adenine in humans. Transfusion. 1975 Mar-Apr;15(2):116–123. doi: 10.1046/j.1537-2995.1975.15275122804.x. [DOI] [PubMed] [Google Scholar]
  17. SHAPIRO B., SELIGSON D., JESSAR R. Measurement of uric acid in biologic fluids using an ion-exchange separation. Clin Chem. 1957 Jun;3(3):169–177. [PubMed] [Google Scholar]
  18. Snyder F. F., Henderson J. F. Alternative pathways of deoxyadenosine and adenosine metabolism. J Biol Chem. 1973 Aug 25;248(16):5899–5904. [PubMed] [Google Scholar]
  19. TSUBOI K. K., HUDSON P. B. Enzymes of the human erythrocyte. II. Purine nucleoside phosphorylase; specific properties. J Biol Chem. 1957 Feb;224(2):889–897. [PubMed] [Google Scholar]
  20. Wolberg G., Zimmerman T. P., Hiemstra K., Winston M., Chu L. C. Adenosine inhibition of lymphocyte-mediated cytolysis: possible role of cyclic adenosine monophosphate. Science. 1975 Mar 14;187(4180):957–959. doi: 10.1126/science.167434. [DOI] [PubMed] [Google Scholar]
  21. Yip L. C., Balis M. E. Inhibitory effects of 2,3-DPG on enzymes of purine nucleotide metabolism. Biochem Biophys Res Commun. 1975 Apr 7;63(3):722–729. doi: 10.1016/s0006-291x(75)80443-8. [DOI] [PubMed] [Google Scholar]
  22. Yount J., Nichols P., Ochs H. D., Hammar S. P., Scott C. R., Chen S. H., Giblett E. R., Wedgwood R. J. Absence of erythrocyte adenosine deaminase associated with severe combined immunodeficiency. J Pediatr. 1974 Feb;84(2):173–177. doi: 10.1016/s0022-3476(74)80597-4. [DOI] [PubMed] [Google Scholar]
  23. Zimmerman T. P., Gersten N. B., Ross A. F., Miech R. P. Adenine as substrate for purine nucleoside phosphorylase. Can J Biochem. 1971 Sep;49(9):1050–1054. doi: 10.1139/o71-153. [DOI] [PubMed] [Google Scholar]
  24. de VERDIER C., GOULD B. J. Purine ribonucleoside and deoxyribonucleoside phosphorylase in human erythrocytes. Biochim Biophys Acta. 1963 Mar 26;68:333–341. doi: 10.1016/0006-3002(63)90155-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES