Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Apr;74(4):1455–1457. doi: 10.1073/pnas.74.4.1455

Selective scattering spectra as an approach to internal structure of granal and agranal chloroplasts.

G E Bialek, G Horváth, G I Garab, L A Mustárdy, A Faludi-Dániel
PMCID: PMC430796  PMID: 266186

Abstract

Selective scattering spectra of granal and agranal chloroplasts were measured in the red spectral region and compared with calculations based on the Mie theory. The spectra were influenced considerably by the intactness and ultrastructural pattern of the chloroplasts. It was demonstrated that the spectra consist of two components: one attributable to grana and the other, to single lamellae. The dependence of the selective scattering spectra on the ultrastructural characteristics offers a convenient method for monitoring the quality of chloroplast preparations by a procedure much faster than electron microscopy.

Full text

PDF
1455

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. M., Boardman N. K. Fractionation of the photochemical systems of photosynthesis. I. Chlorophyll contents and photochemical activities of particles isolated from spinach chloroplasts. Bibl Laeger. 1966 Mar 14;112(3):403–421. doi: 10.1016/0926-6585(66)90244-5. [DOI] [PubMed] [Google Scholar]
  2. Bryant F. D., Seiber B. A., Latimer P. Absolute optical cross sections of cells and chloroplasts. Arch Biochem Biophys. 1969 Dec;135(1):97–108. doi: 10.1016/0003-9861(69)90520-7. [DOI] [PubMed] [Google Scholar]
  3. CHARNEY E., BRACKETT F. S. The spectral dependence of scattering from a spherical alga and its implications for the state of organization of the light-accepting pigments. Arch Biochem Biophys. 1961 Jan;92:1–12. doi: 10.1016/0003-9861(61)90210-7. [DOI] [PubMed] [Google Scholar]
  4. Faludi-Dániel A., Demeter S., Garay A. S. Circular dichroism spectra of granal and agranal chloroplasts of maize. Plant Physiol. 1973 Jul;52(1):54–56. doi: 10.1104/pp.52.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Frackowiak D., Januszczyk L. Light scattering on suspension of algae. Bull Acad Pol Sci Biol. 1974;22(11):761–768. [PubMed] [Google Scholar]
  6. Hall D. O. Nomenclature for isolated chloroplasts. Nat New Biol. 1972 Jan 26;235(56):125–126. doi: 10.1038/newbio235125a0. [DOI] [PubMed] [Google Scholar]
  7. LATIMER P., EUBANKS C. A. Absorption spectrophotometry of turbid suspensions: a method of correcting for large systematic distortions. Arch Biochem Biophys. 1962 Aug;98:274–285. doi: 10.1016/0003-9861(62)90184-4. [DOI] [PubMed] [Google Scholar]
  8. LATIMER P., RABINOWITCH E. Selective scattering of light by pigments in vivo. Arch Biochem Biophys. 1959 Oct;84:428–441. doi: 10.1016/0003-9861(59)90605-8. [DOI] [PubMed] [Google Scholar]
  9. Latimer P., Moore D. M., Bryant F. D. Changes in total light scattering and absorption caused by changes in particle conformation. J Theor Biol. 1968 Dec;21(3):348–367. doi: 10.1016/0022-5193(68)90120-3. [DOI] [PubMed] [Google Scholar]
  10. Latimer P., Pyle B. E. Light scattering at various angles. Theoretical predictions of the effects of particle volume changes. Biophys J. 1972 Jul;12(7):764–773. doi: 10.1016/S0006-3495(72)86120-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Thorne S. W., Horvath G., Kahn A., Boardman N. K. Light-dependent absorption and selective scattering changes at 518 nm in chloroplast thylakoid membranes. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3858–3862. doi: 10.1073/pnas.72.10.3858. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES