Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Aug;73(8):2913–2917. doi: 10.1073/pnas.73.8.2913

Evoked neurotransmitter release: statistical effects of nonuniformity and nonstationarity.

T H Brown, D H Perkel, M W Feldman
PMCID: PMC430800  PMID: 8781

Abstract

Recent studies of the mechanism of quantal neurotransmitter release have assumed that the number of quanta released at each stimulation is binomially distributed and have sought to estimate the binomial parameters n and p. Mathematical analysis and computer simulations show that temporal variation in the number of eligible or filled release sites and either spatial or temporal variation in the probability of release at a site can drastically bias such estimates, while the experimental histograms remain statistically indistinguishable from those predicted by the binomial law. Interpretation of the estimates n and p in terms of ultrastructural or physiological characteristics of the nerve terminal is liable to significant error if departures from the binomial assumptions are not suitably assessed.

Full text

PDF
2913

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett M. R., Florin T. A statistical analysis of the release of acetylcholine at newly formed synapses in striated muscle. J Physiol. 1974 Apr;238(1):93–107. doi: 10.1113/jphysiol.1974.sp010512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennett M. R., Florin T., Hall R. The effect of calcium ions on the binomial statistic parameters which control acetylcholine release at synapses in striated muscle. J Physiol. 1975 May;247(2):429–446. doi: 10.1113/jphysiol.1975.sp010939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennett M. R., Pettigrew A. G. The formation of synapses in amphibian striated muscle during development. J Physiol. 1975 Oct;252(1):203–239. doi: 10.1113/jphysiol.1975.sp011141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Branisteanu D. D., Miyamoto M. D., Volle R. L. Quantal release parameters during fade of endplate potentials. Naunyn Schmiedebergs Arch Pharmacol. 1975;288(2-3):323–327. doi: 10.1007/BF00500538. [DOI] [PubMed] [Google Scholar]
  5. Branisteanu D. D., Volle R. L. Modification by lithium of transmitter release at the neuromuscular junction of the frog. J Pharmacol Exp Ther. 1975 Aug;194(2):362–372. [PubMed] [Google Scholar]
  6. Bray J. J., Harris A. J. Dissociation between nerve-muscle transmission and nerve trophic effects on rat diaphragm using type D botulinum toxin. J Physiol. 1975 Dec;253(1):53–77. doi: 10.1113/jphysiol.1975.sp011179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Couteaux R. Remarks on the organization of axon terminals in relation to secretory processes at synapses. Adv Cytopharmacol. 1974;2:369–379. [PubMed] [Google Scholar]
  8. DEL CASTILLO J., KATZ B. Quantal components of the end-plate potential. J Physiol. 1954 Jun 28;124(3):560–573. doi: 10.1113/jphysiol.1954.sp005129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Heuser J. E., Reese T. S., Landis D. M. Functional changes in frog neuromuscular junctions studied with freeze-fracture. J Neurocytol. 1974 Mar;3(1):109–131. doi: 10.1007/BF01111936. [DOI] [PubMed] [Google Scholar]
  10. Hubbard J. I. Microphysiology of vertebrate neuromuscular transmission. Physiol Rev. 1973 Jul;53(3):674–723. doi: 10.1152/physrev.1973.53.3.674. [DOI] [PubMed] [Google Scholar]
  11. Johnson E. W., Wernig A. The binomial nature of transmitter release at the crayfish neuromuscular junction. J Physiol. 1971 Nov;218(3):757–767. doi: 10.1113/jphysiol.1971.sp009642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kuno M. Quantum aspects of central and ganglionic synaptic transmission in vertebrates. Physiol Rev. 1971 Oct;51(4):647–678. doi: 10.1152/physrev.1971.51.4.647. [DOI] [PubMed] [Google Scholar]
  13. McLachlan E. M. An analysis of the release of acetylcholine from preganglionic nerve terminals. J Physiol. 1975 Feb;245(2):447–466. doi: 10.1113/jphysiol.1975.sp010855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McLachlan E. M. Changes in statistical release parameters during prolonged stimulation of preganglionic nerve terminals. J Physiol. 1975 Dec;253(2):477–491. doi: 10.1113/jphysiol.1975.sp011201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miyamoto M. D. Binomial analysis of quantal transmitter release at glycerol treated frog neuromuscular junctions. J Physiol. 1975 Aug;250(1):121–142. doi: 10.1113/jphysiol.1975.sp011045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pfenninger K. H., Rovainen C. M. Stimulation- and calcium-dependence of vesicle attachment sites in the presynaptic membrane: a freeze-cleave study on the lamprey spinal cord. Brain Res. 1974 May 31;72(1):1–23. doi: 10.1016/0006-8993(74)90646-5. [DOI] [PubMed] [Google Scholar]
  17. Robinson J. Estimation of parameters for a model of transmitter release at synapses. Biometrics. 1976 Mar;32(1):61–68. [PubMed] [Google Scholar]
  18. Wernig A. Changes in statistical parameters during facilitation at the crayfish neuromuscular junction. J Physiol. 1972 Nov;226(3):751–759. doi: 10.1113/jphysiol.1972.sp010007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wernig A. Estimates of statistical release parameters from crayfish and frog neuromuscular junctions. J Physiol. 1975 Jan;244(1):207–221. doi: 10.1113/jphysiol.1975.sp010792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wernig A. Quantum hypothesis of synaptic transmission. J Neural Transm. 1975;Suppl 12:61–74. doi: 10.1007/978-3-7091-8384-7_3. [DOI] [PubMed] [Google Scholar]
  21. Wernig A. The effects of calcium and magnesium on statistical release parameters at the crayfish neuromuscular junction. J Physiol. 1972 Nov;226(3):761–768. doi: 10.1113/jphysiol.1972.sp010008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zucker R. S. Changes in the statistics of transmitter release during facilitation. J Physiol. 1973 Mar;229(3):787–810. doi: 10.1113/jphysiol.1973.sp010167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Zucker R. S. Crayfish neuromuscular facilitation activated by constant presynaptic action potentials and depolarizing pulses. J Physiol. 1974 Aug;241(1):69–89. doi: 10.1113/jphysiol.1974.sp010641. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES