Abstract
The giant internode cells of Nitella axillaris exhibit acid-induced growth similar to that found in higher plants. The threshold pH is 4.5, with a maximum at 3.5. The acid growth effect is transient, lasting no more than 32 min. Extensibility measurements of isolated cell walls showed a similar pattern of acid enhancement. Prolonged boiling in water (12 hr) only partially inhibited the acid-induced wall extensibility and actually increased the extensibility at pH 6. It was concluded that physical, rather than enzymatic, processes were responsible for acid-enhanced continuous extension ("creep") in Nitella walls. A complex cation-sensitive mechanism that affects extensibility was also characterized. Among the stimulatory (wall-softening) cations, divalents were generally more effective than monovalents, with magnesium being the most stimulatory. The inhibitory (wall-hardening) cations included divalents and trivalents, aluminum being the most inhibitory. Ionic effects on extensibility were even less sensitive to prolonged boiling in water than acid effects.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- GREEN P. B. Multinet growth in the cell wall of Nitella. J Biophys Biochem Cytol. 1960 Apr;7:289–296. doi: 10.1083/jcb.7.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GREEN P. B. Structural characteristics of developing Nitella internodal cell walls. J Biophys Biochem Cytol. 1958 Sep 25;4(5):505–515. doi: 10.1083/jcb.4.5.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green P. B., Erickson R. O., Buggy J. Metabolic and physical control of cell elongation rate: in vivo studies in nitella. Plant Physiol. 1971 Mar;47(3):423–430. doi: 10.1104/pp.47.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green P. B. Growth Physics in Nitella: a Method for Continuous in Vivo Analysis of Extensibility Based on a Micro-manometer Technique for Turgor Pressure. Plant Physiol. 1968 Aug;43(8):1169–1184. doi: 10.1104/pp.43.8.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heyn A. N. Dextranase activity and auxin-induced cell elongation in coleoptiles of Avena. Biochem Biophys Res Commun. 1970 Mar 12;38(5):831–837. doi: 10.1016/0006-291x(70)90794-1. [DOI] [PubMed] [Google Scholar]
- Kitasato H. The influence of H+ on the membrane potential and ion fluxes of Nitella. J Gen Physiol. 1968 Jul;52(1):60–87. doi: 10.1085/jgp.52.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rayle D. L., Cleland R. Enhancement of wall loosening and elongation by Acid solutions. Plant Physiol. 1970 Aug;46(2):250–253. doi: 10.1104/pp.46.2.250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spanswick R. M. Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K + , Na + , light and temperature on the membrane potential and resistance. Biochim Biophys Acta. 1972 Oct 23;288(1):73–89. doi: 10.1016/0005-2736(72)90224-6. [DOI] [PubMed] [Google Scholar]
- Spear D. G., Barr J. K., Barr C. E. Localization of hydrogen ion and chloride ion fluxes in Nitella. J Gen Physiol. 1969 Sep;54(3):397–414. doi: 10.1085/jgp.54.3.397. [DOI] [PMC free article] [PubMed] [Google Scholar]