Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Apr;74(4):1575–1579. doi: 10.1073/pnas.74.4.1575

Adenylate cyclase from synchronized neuroblastoma cells: responsiveness to prostaglandin E1, adenosine, and dopamine during the cell cycle.

J Pénit, B Cantau, J Huot, S Jard
PMCID: PMC430833  PMID: 266197

Abstract

Neuroblastoma cells were synchronized by a combined isoleucine plus glutamine starvation. Adenylate cyclase activity [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] was measured under basal conditions and in the presence of dopamine, adenosine and prostaglandin (PG) E1. A clear dissociation occurred between the respective evolution patterns of basal and agonist-stimulated adenylate cyclase activities. The magnitudes of the enzyme response to PGE1, adenosine, and dopamine also exhibited different evolution patterns during the cell cycle. Evolution of adenylate cyclase responsiveness to PGE1 during the cell cycle exhibited striking similarities with the intracellular 3':5'-cyclic AMP changes observed elsewhere. Use of theophylline and fluphenazine as specific inhibitors of adenosine and dopamine, respectively, made it possible to demonstrate that adenosine, dopamine, and PGE1 stimulated adenylate cyclase through independent receptor sites. Furthermore, whatever the stage of the cell cycle, responses to these three agonists were not additive, indicating that the receptors of adenosine, dopamine, and PGE1 control the same adenylate cyclase moieties. The data suggest that adenylate cyclase cell content and enzyme responsiveness to specific agonists can be independently controlled.

Full text

PDF
1575

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amano T., Richelson E., Nirenberg M. Neurotransmitter synthesis by neuroblastoma clones (neuroblast differentiation-cell culture-choline acetyltransferase-acetylcholinesterase-tyrosine hydroxylase-axons-dendrites). Proc Natl Acad Sci U S A. 1972 Jan;69(1):258–263. doi: 10.1073/pnas.69.1.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birnbaumer L., Yang P. C. Studies on receptor-mediated activation of adenylyl cyclases. I. Preparation and description of general properties of an adenylyl cyclase system in beef renal medullary membranes sensitive to neurohypophyseal hormones. J Biol Chem. 1974 Dec 25;249(24):7848–7856. [PubMed] [Google Scholar]
  3. Burger M. M., Bombik B. M., Breckenridge B. M., Sheppard J. R. Growth control and cyclic alterations of cyclic AMP in the cell cycle. Nat New Biol. 1972 Oct 11;239(93):161–163. doi: 10.1038/newbio239161a0. [DOI] [PubMed] [Google Scholar]
  4. Hamprecht B., Jaffee B. M., Philpott G. W. Prostaglandin production by neuroblastoma, glioma and fibroblast cell lines; stimulation by N6,02'-dibutyryl adenosine 3':5'-cyclic monophosphate. FEBS Lett. 1973 Oct 15;36(2):193–198. doi: 10.1016/0014-5793(73)80367-9. [DOI] [PubMed] [Google Scholar]
  5. Iversen L. L. Dopamine receptors in the brain. Science. 1975 Jun 13;188(4193):1084–1089. doi: 10.1126/science.2976. [DOI] [PubMed] [Google Scholar]
  6. Kram R., Mamont P., Tomkins G. M. Pleiotypic control by adenosine 3':5'-cyclic monophosphate: a model for growth control in animal cells. Proc Natl Acad Sci U S A. 1973 May;70(5):1432–1436. doi: 10.1073/pnas.70.5.1432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kram R., Tomkins G. M. Pleiotypic control by cyclic AMP: interaction with cyclic GMP and possible role of microtubules. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1659–1663. doi: 10.1073/pnas.70.6.1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Makman M. H., Klein M. I. Expression of adenylate cyclase, catecholamine receptor, and cyclic adenosine monophosphate-dependent protein kinase in synchronized culture of Chang's liver cells (S phase-membrane receptors-NaF stimulation). Proc Natl Acad Sci U S A. 1972 Feb;69(2):456–458. doi: 10.1073/pnas.69.2.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Millis A. J., Forrest G. A., Pious D. A. Cyclic AMP dependent regulation of mitosis in human lymphoid cells. Exp Cell Res. 1974 Feb;83(2):335–343. doi: 10.1016/0014-4827(74)90347-4. [DOI] [PubMed] [Google Scholar]
  10. Millis A. J., Forrest G., Pious D. A. Cyclic AMP in cultured human lymphoid cells: relationship to mitosis. Biochem Biophys Res Commun. 1972 Dec 18;49(6):1645–1649. doi: 10.1016/0006-291x(72)90531-1. [DOI] [PubMed] [Google Scholar]
  11. Pastan I. H., Johnson G. S., Anderson W. B. Role of cyclic nucleotides in growth control. Annu Rev Biochem. 1975;44:491–522. doi: 10.1146/annurev.bi.44.070175.002423. [DOI] [PubMed] [Google Scholar]
  12. Penit J., Huot J., Jard S. Neuroblastoma cell adenylate cyclase: direct activation by adenosine and prostaglandins. J Neurochem. 1976 Feb;26(2):265–273. doi: 10.1111/j.1471-4159.1976.tb04475.x. [DOI] [PubMed] [Google Scholar]
  13. Prasad K. N., Hsie A. W. Morphologic differentiation of mouse neuroblastoma cells induced in vitro by dibutyryl adenosine 3':5'-cyclic monophosphate. Nat New Biol. 1971 Sep 29;233(39):141–142. doi: 10.1038/newbio233141a0. [DOI] [PubMed] [Google Scholar]
  14. Prasad K. N. Morphological differentiation induced by prostaglandin in mouse neuroblastoma cells in culture. Nat New Biol. 1972 Mar 15;236(63):49–52. doi: 10.1038/newbio236049a0. [DOI] [PubMed] [Google Scholar]
  15. Seifert W., Rudland P. S. Cyclic nucleotides and growth control in cultured mouse cells: correlation of changes in intracellular 3':5' cGMP concentration with a specific phase of the cell cycle. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4920–4924. doi: 10.1073/pnas.71.12.4920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Thomas D. R., Philpott G. W., Jaffe B. M. The relationship between concentration of prostaglandin E and rates of cell replication. Exp Cell Res. 1974 Mar 15;84(1):40–46. doi: 10.1016/0014-4827(74)90377-2. [DOI] [PubMed] [Google Scholar]
  17. Varga J. M., Dipasquale A., Pawelek J., McGuire J. S., Lerner A. B. Regulation of melanocyte stimulating hormone action at the receptor level: discontinuous binding of hormone to synchronized mouse melanoma cells during the cell cycle. Proc Natl Acad Sci U S A. 1974 May;71(5):1590–1593. doi: 10.1073/pnas.71.5.1590. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES