Abstract
Several thermodynamic properties for the process of dissolution of pure hydrocarbons into water are found to be linearly related to the number of hydrogens on the hydrocarbon molecule. From the correlations found for the Gibbs energy change, enthalpy change, and heat capacity change, along with the use of an average minimum solubility temperature, an equation of state for the hydrophobic effect is derived. The entropy change upon dissolution per hydrocarbon hydrogen atom is close to -R ln 2. A model based upon a “tetrahedrally” localized water molecule with one corner defined by a carbon-hydrogen group and the other three corners defined by water molecules is used to estimate the observed entropy and heat capacity changes.
Keywords: hydrocarbons, water structure
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Reynolds J. A., Gilbert D. B., Tanford C. Empirical correlation between hydrophobic free energy and aqueous cavity surface area. Proc Natl Acad Sci U S A. 1974 Aug;71(8):2925–2927. doi: 10.1073/pnas.71.8.2925. [DOI] [PMC free article] [PubMed] [Google Scholar]