Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Sep;73(9):2982–2986. doi: 10.1073/pnas.73.9.2982

Implications of cross inhibitory interactions of potential mediators of hormone and neurotransmitter action.

E Van Cauter, J G Hardman, J E Dumont
PMCID: PMC430901  PMID: 9639

Abstract

Mediators of hormone and neurotransmitter action may exert negative control on the accumulation of one another (adenosine 3':5'-cyclic monophosphate, or conversely). A model in which one agonist stimulates the formation of two mediators which inhibit each other's accumulation has been simulated. Three types of agonist-receptor interaction, five mechanisms of inhibition, and three types of basal activity have been considered which lead to a set of 45 descriptions of the general cross inhibition model. For these submodels, pattern of the relation of agonist to mediator concentrations at steady state conditions have been defined. Some patterns are complex with mediator curves exhibiting extrema, one a maximum and the other a minimum. The complexity of the pattern depends on the submodel and on the degree of asymmetry between the parameters of each of the mediator pathways (e.g.,affinities for the agonist, strength of the inhibitions, etc.). This simple model can thus account for complex experimental results without requiring the postulation of elaborate molecular models of agonist-receptor interaction. The simulations presented emphasize the necessity of investigating a wide range of agonist concentrations.

Full text

PDF
2982

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson R., Nilsson K., Wikberg J., Johansson S., Mohme-Lundholm E., Lundholm L. Cyclic nucleotides and the contraction of smooth muscle. Adv Cyclic Nucleotide Res. 1975;5:491–518. [PubMed] [Google Scholar]
  2. Batzri S., Selinger Z., Schramm M. Potassium ion release and enzyme secretion: adrenergic regulation by alpha- and beta-receptors. Science. 1971 Dec 3;174(4013):1029–1031. doi: 10.1126/science.174.4013.1029. [DOI] [PubMed] [Google Scholar]
  3. Baudouin-Legros M., Meyer P. Effects of angiotensin, catecholamines and cyclic AMP on calcium storage in aortic microsomes. Br J Pharmacol. 1973 Feb;47(2):377–385. doi: 10.1111/j.1476-5381.1973.tb08335.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beavo J. A., Hardman J. G., Sutherland E. W. Stimulation of adenosine 3',5'-monophosphate hydrolysis by guanosine 3',5'-monophosphate. J Biol Chem. 1971 Jun 25;246(12):3841–3846. [PubMed] [Google Scholar]
  5. Birnbaumer L., Pohl S. L., Kaumann A. J. Receptors and acceptors: a necessary distinction in hormone binding studies. Adv Cyclic Nucleotide Res. 1974;4(0):239–281. [PubMed] [Google Scholar]
  6. Butcher F. R. The role of calcium and cyclic nucleotides in alpha-amylase release from slices of rat parotid: studies with the divalent cation ionophore A-23187. Metabolism. 1975 Mar;24(3):409–418. doi: 10.1016/0026-0495(75)90120-1. [DOI] [PubMed] [Google Scholar]
  7. Cuatrecasas P. Membrane receptors. Annu Rev Biochem. 1974;43(0):169–214. doi: 10.1146/annurev.bi.43.070174.001125. [DOI] [PubMed] [Google Scholar]
  8. Entman M. L., Levey G. S., Epstein S. E. Mechanism of action of epinephrine and glucagon on the canine heart. Evidence for increase in sarcotubular calcium stores mediated by cyclic 3',5'-AMP. Circ Res. 1969 Oct;25(4):429–438. doi: 10.1161/01.res.25.4.429. [DOI] [PubMed] [Google Scholar]
  9. Ferrendelli J. A., Kinscherf D. A., Chang M. M. Regulation of levels of guanosine cyclic 3',5'-monophosphate in the central nervous system: effects of depolarizing agents. Mol Pharmacol. 1973 Jul;9(4):445–454. [PubMed] [Google Scholar]
  10. Field J. B. Thyroid-stimulating hormone and cyclic adenosine 3',5'-monophosphate in the regulation of thyroid gland function. Metabolism. 1975 Mar;24(3):381–393. doi: 10.1016/0026-0495(75)90118-3. [DOI] [PubMed] [Google Scholar]
  11. Franks D. J., Macmanus J. P. Cyclic GMP stimulation and inhibition of cyclic AMP phosphodiesterase from thymic lymphocytes. Biochem Biophys Res Commun. 1971 Mar 5;42(5):844–849. doi: 10.1016/0006-291x(71)90507-9. [DOI] [PubMed] [Google Scholar]
  12. Friedmann N. Effects of glucagon and cyclic AMP on ion fluxes in the perfused liver. Biochim Biophys Acta. 1972 Jul 3;274(1):214–225. doi: 10.1016/0005-2736(72)90295-7. [DOI] [PubMed] [Google Scholar]
  13. Friedmann N., Park C. R. Early effects of 3',5'-adenosine monophosphate on the fluxes of calcium end potassium in the perfused liver of normal and adrenalectomized rats. Proc Natl Acad Sci U S A. 1968 Oct;61(2):504–508. doi: 10.1073/pnas.61.2.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goldberg N. D., O'Dea R. F., Haddox M. K. Cyclic GMP. Adv Cyclic Nucleotide Res. 1973;3:155–223. [PubMed] [Google Scholar]
  15. Grenier G., Van Sande J., Glick D., Dumont J. E. Effect of ionophore A23187 on thyroid secretion. FEBS Lett. 1974 Dec 1;49(1):96–99. doi: 10.1016/0014-5793(74)80640-x. [DOI] [PubMed] [Google Scholar]
  16. Kakiuchi S., Yamazaki R., Teshima Y., Uenishi K. Regulation of nucleoside cyclic 3':5'-monophosphate phosphodiesterase activity from rat brain by a modulator and Ca2+. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3526–3530. doi: 10.1073/pnas.70.12.3526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Katz A. M., Tada M., Kirchberger M. A. Control of calcium transport in the myocardium by the cyclic AMP-Protein kinase system. Adv Cyclic Nucleotide Res. 1975;5:453–472. [PubMed] [Google Scholar]
  18. Lin Y. M., Liu Y. P., Cheung W. Y. Cyclic 3':5'-nucleotide phosphodiesterase. Purification, characterization, and active form of the protein activator from bovine brain. J Biol Chem. 1974 Aug 10;249(15):4943–4954. [PubMed] [Google Scholar]
  19. Rasmussen H., Jensen P., Lake W., Friedmann N., Goodman D. B. Cyclic nucleotides and cellular calcium metabolism. Adv Cyclic Nucleotide Res. 1975;5:375–394. [PubMed] [Google Scholar]
  20. Rodesch F., Bogaert C., Dumont J. E. Stimulation par l'hormone thyréotrope de la mobilisation du calcium thyroïdien. C R Acad Sci Hebd Seances Acad Sci D. 1974 Feb 11;278(7):931–934. [PubMed] [Google Scholar]
  21. Schultz G., Hardman J. G., Schultz K., Baird C. E., Sutherland E. W. The importance of calcium ions for the regulation of guanosine 3':5'-cyclic monophosphage levels. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3889–3893. doi: 10.1073/pnas.70.12.3889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Selinger Z., Eimerl S., Schramm M. A calcium ionophore simulating the action of epinephrine on the alpha-adrenergic receptor. Proc Natl Acad Sci U S A. 1974 Jan;71(1):128–131. doi: 10.1073/pnas.71.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sharma R. K., Ahmed N. K., Sutliff L. S., Brush J. S. Metabolic regulation of steroidogenesis in isolated adrenal cells of the rat. ACTH regulation of cGMP and cAMP levels and steroidogenesis. FEBS Lett. 1974 Sep 1;45(1):107–110. doi: 10.1016/0014-5793(74)80822-7. [DOI] [PubMed] [Google Scholar]
  24. Sherline P., Lynch A., Glinsmann W. H. Cyclic AMP and adrenergic receptor control of rat liver glycogen metabolism. Endocrinology. 1972 Sep;91(3):680–690. doi: 10.1210/endo-91-3-680. [DOI] [PubMed] [Google Scholar]
  25. Smith R. J., Ignarro L. J. Bioregulation of lysosomal enzyme secretion from human neutrophils: roles of guanosine 3':5'-monophosphate and calcium in stimulus-secretion coupling. Proc Natl Acad Sci U S A. 1975 Jan;72(1):108–112. doi: 10.1073/pnas.72.1.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Steer M. L., Levitzki A. The control of adenylate cyclase by calcium in turkey erythrocyte ghosts. J Biol Chem. 1975 Mar 25;250(6):2080–2084. [PubMed] [Google Scholar]
  27. Steer M. L., Levitzki A. The interaction of catecholamines, Ca2+ and adenylate cyclase in the intact turkey erythrocyte. Arch Biochem Biophys. 1975 Mar;167(1):371–376. doi: 10.1016/0003-9861(75)90473-7. [DOI] [PubMed] [Google Scholar]
  28. Tada M., Kirchberger M. A., Iorio J. M., Katz A. M. Control of cardiac sarcolemmal adenylate cyclase and sodium, potassium-activated adenosinetriphosphatase activities. Circ Res. 1975 Jan;36(1):8–17. doi: 10.1161/01.res.36.1.8. [DOI] [PubMed] [Google Scholar]
  29. Teo T. S., Wang J. H. Mechanism of activation of a cyclic adenosine 3':5'-monophosphate phosphodiesterase from bovine heart by calcium ions. Identification of the protein activator as a Ca2+ binding protein. J Biol Chem. 1973 Sep 10;248(17):5950–5955. [PubMed] [Google Scholar]
  30. Terasaki W. L., Appleman M. M. The role of cyclic GMP in the regulation of cyclic AMP hydrolysis. Metabolism. 1975 Mar;24(3):311–319. doi: 10.1016/0026-0495(75)90112-2. [DOI] [PubMed] [Google Scholar]
  31. Tolbert M. E., Butcher F. R., Fain J. N. Lack of correlation between catecholamine effects on cyclic adenosine 3':5'-monophosphate and gluconeogenesis in isolated rat liver cells. J Biol Chem. 1973 Aug 25;248(16):5686–5692. [PubMed] [Google Scholar]
  32. Van Sande J., Decoster C., Dumont J. E. Control and role of cyclic 3',5'-guanosine monophosphate. Biochem Biophys Res Commun. 1975 Jan 20;62(2):168–175. doi: 10.1016/s0006-291x(75)80119-7. [DOI] [PubMed] [Google Scholar]
  33. Wolff D. J., Brostrom C. O. Calcium-binding phosphoprotein from pig brain: identification as a calcium-dependent regulator of brain cyclic nucleotide phosphodiesterase. Arch Biochem Biophys. 1974 Jul;163(1):349–358. doi: 10.1016/0003-9861(74)90486-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES