Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Sep;73(9):3054–3058. doi: 10.1073/pnas.73.9.3054

Importance of the third amino acid residue of oxytocin for its action on isolated rat uterus: study of relationship between hormone conformation and activity.

R Walter, C W Smith, J Roy
PMCID: PMC430926  PMID: 184456

Abstract

In a continued effort to relate the three-dimensional structure of a peptide hormone to its biological activity, the dose-response relationships of [3-phenylalanine] oxytocin (oxypressin), with an aromatic amino acid residue in position 3, and [3-beta-cyclohexylalanine]oxytocin, with an aliphatic amino acid residue to position 3, were determined in the rat uterine assay in vitro and compared to that of oxytocin. Oxypressin has not only a lower affinity for the smooth muscle receptor than the natural hormone, but also a decreased maximal response (efficacy). [3-beta-Cyclohexylalanine]oxytocin exhibits an even lower affinity than oxypressin, but retains the same maximal response as oxytocin. A reorientation of the tyrosine sidechain, caused by the presence of a neighboring aromatic sidechain in position 3, away from the surface of the 20-membered ring is though to remove the phenolic hydroxyl group from its optimal position in the "active center" of oxytocin and give rise to the reduced efficacy of oxypressin.

Full text

PDF
3054

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CHAN W. Y., DU VIGNEAUD V. Comparison of the pharmacologic properties of oxytocin and its highly potent analogue, desamino-oxytocin. Endocrinology. 1962 Dec;71:977–982. doi: 10.1210/endo-71-6-977. [DOI] [PubMed] [Google Scholar]
  2. CHAN W. Y., O'CONNELL M., POMEROY S. R. Effects of the estrous cycle on the sensitivity of rat uterus to oxytocin and desamino-oxytocin. Endocrinology. 1963 Feb;72:279–282. doi: 10.1210/endo-72-2-279. [DOI] [PubMed] [Google Scholar]
  3. CRAIG L. C., HARFENIST E. J., PALADINI A. C. DIALYSIS STUDIES. 7. THE BEHAVIOR OF ANGIOTENSIN, OXYTOCIN, VASOPRESSIN, AND SOME OF THEIR ANALOGS. Biochemistry. 1964 Jun;3:764–769. doi: 10.1021/bi00894a005. [DOI] [PubMed] [Google Scholar]
  4. Deslauriers R., Smith C. P., Walter R. Conformational flexibility of the neurohypophyseal hormones oxytocin and lysine-vasopressin. A carbon-13 spin-lattice relaxation study of backbone and side chains. J Am Chem Soc. 1974 Apr 3;96(7):2289–2291. doi: 10.1021/ja00814a071. [DOI] [PubMed] [Google Scholar]
  5. Deslauriers R., Smith I. C. Evidence from proton magnetic resonance data for the stacking of aromatic amino acids in lysine-vasopressin: comparison with oxytocin derivatives and related dipeptides. Biochem Biophys Res Commun. 1970 Jul 13;40(1):179–185. doi: 10.1016/0006-291x(70)91063-6. [DOI] [PubMed] [Google Scholar]
  6. Fric I., Kodícek M., Flegel M., Zaoral M. Circular-dichroic spectra of vasopressin analogues and their cyclic fragments. Eur J Biochem. 1975 Aug 15;56(2):493–502. doi: 10.1111/j.1432-1033.1975.tb02255.x. [DOI] [PubMed] [Google Scholar]
  7. Gregory H., Jones D. S., Morley H. S. Polypeptides. VII. Variations of the phenylalanyl position in the C-terminal tetrapeptide amide sequence of the gastrins. J Chem Soc Perkin 1. 1968;5:531–540. doi: 10.1039/j39680000531. [DOI] [PubMed] [Google Scholar]
  8. HOPE D. B., MURTI V. V., DU VIGNEAUD V. A highly potent analogue of oxytocin, desamino-oxytocin. J Biol Chem. 1962 May;237:1563–1566. [PubMed] [Google Scholar]
  9. Kotelchuck D., Scheraga H. A., Walter R. Conformational energy studies of oxytocin and its cyclic moiety. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3629–3633. doi: 10.1073/pnas.69.12.3629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. König W., Geiger R. Eine neue Methode zur Synthese von Peptiden: Aktivierung der Carboxylgruppe mit Dicyclohexycarbodiimid unter Zusatz von 1-Hydroxy-benzotriazolen. Chem Ber. 1970;103(3):788–798. doi: 10.1002/cber.19701030319. [DOI] [PubMed] [Google Scholar]
  11. Morley J. S. Structure--function relationships in gastrin-like peptides. Proc R Soc Lond B Biol Sci. 1968 May 14;170(1018):97–111. doi: 10.1098/rspb.1968.0028. [DOI] [PubMed] [Google Scholar]
  12. Nestor J. J., Jr, Ferger M. F., Chan W. Y. (4-Phenylalanine)oxytocin, an inhibitor of the antidiuretic effect of 8-arginine-vasopressin. J Med Chem. 1975 Oct;18(10):1022–1024. doi: 10.1021/jm00244a014. [DOI] [PubMed] [Google Scholar]
  13. RUDINGER J., KREJCI I. Dose-response relations for some synthetic analogues of oxytocin, and the mode of action of oxytocin on the isolated uterus. Experientia. 1962 Dec 15;18:585–588. doi: 10.1007/BF02172197. [DOI] [PubMed] [Google Scholar]
  14. Schnabel E. Verbesserte Synthese von tert.-Butyloxycarbonyl-aminosäuren durch pH-Stat-Reaktion. Justus Liebigs Ann Chem. 1967;702:188–196. doi: 10.1002/jlac.19677020123. [DOI] [PubMed] [Google Scholar]
  15. Urry D. W., Walter R. Proposed conformation of oxytocin in solution. Proc Natl Acad Sci U S A. 1971 May;68(5):956–958. doi: 10.1073/pnas.68.5.956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. VAN ROSSUM J. M. Cumulative dose-response curves. II. Technique for the making of dose-response curves in isolated organs and the evaluation of drug parameters. Arch Int Pharmacodyn Ther. 1963;143:299–330. [PubMed] [Google Scholar]
  17. Walter R., Dubois B. M., Eggena P., Schwartz I. L. Comparison of the mode of action of oxytocin and lysine-vasopressin on the isolated rat uterus. Experientia. 1969 Jan 15;25(1):33–34. doi: 10.1007/BF01903876. [DOI] [PubMed] [Google Scholar]
  18. Walter R., Dubois B. M., Schwartz I. L. Biological significance of the amino acid residue in position 3 of neurohypophyseal hormones and the effect of magnesium on their uterotonic action. Endocrinology. 1968 Nov;83(5):979–983. doi: 10.1210/endo-83-5-979. [DOI] [PubMed] [Google Scholar]
  19. Walter R., Havran R. T., Schwartz I. L. Synthetic metabolites of neurohypophyseal hormones. (Des-9-glycinamide)oxytocin and (des-9-glycinamide, des-8-leucine)oxytocin. J Med Chem. 1976 Feb;19(2):328–330. doi: 10.1021/jm00224a025. [DOI] [PubMed] [Google Scholar]
  20. Walter R., Rudinger J., Schwartz I. L. Chemistry and structure-activity relations of the antidiuretic hormones. Am J Med. 1967 May;42(5):653–677. doi: 10.1016/0002-9343(67)90087-3. [DOI] [PubMed] [Google Scholar]
  21. Walter R., Schwartz I. L., Darnell J. H., Urry D. W. Relation of the conformation of oxytocin to the biology of neurohypophyseal hormones. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1355–1359. doi: 10.1073/pnas.68.6.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. YAMASHIRO D. PARTITION CHROMATOGRAPHY OF OXYTOCIN ON 'SEPHADEX'. Nature. 1964 Jan 4;201:76–77. doi: 10.1038/201076a0. [DOI] [PubMed] [Google Scholar]
  23. Yamashiro D., Gillessen D., Du Vigneaud V. Simultaneous synthesis of 1-hemi-D-cystine-oxytocin and oxytocin and separation of the diastereoisomers by partition chromatography on sephadex and by countercurrent distribution. J Am Chem Soc. 1966 Mar 20;88(6):1310–1313. doi: 10.1021/ja00958a040. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES