Abstract
Classical uncouplers such as 2,4-dinitrophenol have been shown to be ionophores with the capability for transporting monovalent or divalent cations with equal efficiency. The conditions appropriate for the maximal expression of this ionophoric capability have been explored. Two critical factors are the polarity of the organic phase and the pH of the aqueous phase that is equilibrated with the organic phase. The demonstrated cationic ionophoric capability of uncouplers, taken in conjunction with the known ability of uncouplers to cycle protons across a membrane phase, provides the experimental basis for the thesis that uncoupling of electron flow from ATP synthesis via classical uncouplers involves the substitution of one coupled process by another. Uncoupling thus reduces to the replacement of one driven reaction (ATP synthesis) by the driven reaction (cyclical transport) mediated by the uncoupler.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amons R., van den Bergh S. G., Slater E. C. The effect of monovalent cations on the dinitrophenol-induced ATPase of rat-liver mitochondria. Biochim Biophys Acta. 1968 Oct 1;162(3):452–454. doi: 10.1016/0005-2728(68)90131-x. [DOI] [PubMed] [Google Scholar]
- Bakker E. P., Arents J. C., Hoebe J. P., Terada H. Surface potential and the interaction of weakly acidic uncouplers of oxidative phosphorylation with liposomes and mitochondria. Biochim Biophys Acta. 1975 Jun 17;387(3):491–506. doi: 10.1016/0005-2728(75)90088-2. [DOI] [PubMed] [Google Scholar]
- Blondin G. A. Isolation, properties, and structural features of divalent cation ionophores derived from beef heart mitochondria. Ann N Y Acad Sci. 1975 Dec 30;264:98–111. doi: 10.1111/j.1749-6632.1975.tb31477.x. [DOI] [PubMed] [Google Scholar]
- DANIELSON L., ERNSTER L. Demonstration of a mitochondrial energy-dependent pyridine nucleotide transhydrogenase reaction. Biochem Biophys Res Commun. 1963 Jan 18;10:91–96. doi: 10.1016/0006-291x(63)90274-2. [DOI] [PubMed] [Google Scholar]
- HEYTLER P. G. uncoupling of oxidative phosphorylation by carbonyl cyanide phenylhydrazones. I. Some characteristics of m-Cl-CCP action on mitochondria and chloroplasts. Biochemistry. 1963 Mar-Apr;2:357–361. doi: 10.1021/bi00902a031. [DOI] [PubMed] [Google Scholar]
- Hanstein W. G., Hatefi Y. Trinitrophenol: a membrane-impermeable uncoupler of oxidative phosphorylation. Proc Natl Acad Sci U S A. 1974 Feb;71(2):288–292. doi: 10.1073/pnas.71.2.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris E. J., Wimhurst J. M. Ionophoric actions of avenaciolide on mitochondrial cations. Arch Biochem Biophys. 1974 Jun;162(2):426–435. doi: 10.1016/0003-9861(74)90201-x. [DOI] [PubMed] [Google Scholar]
- Hunter D. R., Capaldi R. A. Respiratory control in cytochrome oxidase. Biochem Biophys Res Commun. 1974 Feb 4;56(3):623–628. doi: 10.1016/0006-291x(74)90650-0. [DOI] [PubMed] [Google Scholar]
- Komai H., Hunter D. R., Southard J. H., Haworth R. A., Green D. E. Energy coupling in lysolecithin-treated submitochondrial particles. Biochem Biophys Res Commun. 1976 Apr 5;69(3):695–704. doi: 10.1016/0006-291x(76)90931-1. [DOI] [PubMed] [Google Scholar]
- Lardy H. A., Graven S. N., Estrada S. Specific induction and inhibition of cation and anion transport in mitochondria. Fed Proc. 1967 Sep;26(5):1355–1360. [PubMed] [Google Scholar]
- Miko M., Chance B. Isothiocyanates. A new class of uncouplers. Biochim Biophys Acta. 1975 Aug 11;396(2):165–174. doi: 10.1016/0005-2728(75)90031-6. [DOI] [PubMed] [Google Scholar]
- Pfeiffer D. R., Hutson S. M., Kauffman R. F., Lardy H. A. Some effects of ionophore A23187 on energy utilization and the distribution of cations and anions in mitochondria. Biochemistry. 1976 Jun 15;15(12):2690–2697. doi: 10.1021/bi00657a032. [DOI] [PubMed] [Google Scholar]
- Pressman B. C. Properties of ionophores with broad range cation selectivity. Fed Proc. 1973 Jun;32(6):1698–1703. [PubMed] [Google Scholar]
- Sadler M. H., Hunter D. R., Haworth R. A. Isolation of an ATP-Pi exchangease from lysolecithin-treated electron transport particles. Biochem Biophys Res Commun. 1974 Jul 24;59(2):804–812. doi: 10.1016/s0006-291x(74)80051-3. [DOI] [PubMed] [Google Scholar]
- Southard J. H., Green D. E. Control of the energy coupling modes in mitochondria by mercurials. Biochem Biophys Res Commun. 1974 Dec 23;61(4):1310–1316. doi: 10.1016/s0006-291x(74)80427-4. [DOI] [PubMed] [Google Scholar]
- Storey B. T., Wilson D. F., Bracey A., Rosen S. L., Stephenson S. Steric and electronic effects on the uncoupling activity of substituted 3,5 dichlorosalicylanilides. FEBS Lett. 1975 Jan 1;49(3):338–341. doi: 10.1016/0014-5793(75)80780-0. [DOI] [PubMed] [Google Scholar]
- Terada H. Some biochemical and physiochemical properties of the potent uncoupler SF 6847 (3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile). Biochim Biophys Acta. 1975 Jun 17;387(3):519–532. doi: 10.1016/0005-2728(75)90090-0. [DOI] [PubMed] [Google Scholar]
- Terada H., VAN Dam K. On the stoichiometry between uncouplers of oxidative phosphorylation and respiratory chains. The catalytic action of SF 6847 (3,5-di-tert-butyl-4-hydroxy-benzylidenemalononitrile). Biochim Biophys Acta. 1975 Jun 17;387(3):507–518. doi: 10.1016/0005-2728(75)90089-4. [DOI] [PubMed] [Google Scholar]
- Tyson C. A., Vande Zande H., Green D. E. Phospholipids as ionophores. J Biol Chem. 1976 Mar 10;251(5):1326–1332. [PubMed] [Google Scholar]
- Wilson D. F., Chance B. Reversal of azide inhibition by uncouplers. Biochem Biophys Res Commun. 1966 Jun 13;23(5):751–756. doi: 10.1016/0006-291x(66)90465-7. [DOI] [PubMed] [Google Scholar]