Abstract
A species of Rhodopseudomonas that grows under strict anaerobic conditions in the dark and requires CO was isolated from lake and pond sediments. Although anaerobic growth in the dark occurs in a chemically defined mineral medium with CO as the only carbon and energy source, growth is stimulated by adding trypticase. Under these conditions, cells exhibit a generation time of 6.7 hr and reach a final concentration of 1 to 3 X 10(9) cells per ml of liquid medium. Resting suspensions of CO-grown cells metabolize about 6.7 mumol of CO per mg of protein in 1 hr and produce equimolar amounts of CO2 and H2 according to the equation CO + H2O leads to CO2 + H2. As predicted by this equation, when cells were suspended in tritium-labeled water containing potassium phosphate buffer at pH 7.0 and incubated with pure CO, 3H2 gas was produced at linear rate with a constant specific activity.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alpert B., Banerjee R. Photodissociation of carbon monoxide from some new hemoglobin derivatives. A possible case of energy transfer. Biochem Biophys Res Commun. 1971 Feb 19;42(4):608–614. doi: 10.1016/0006-291x(71)90531-6. [DOI] [PubMed] [Google Scholar]
- Anand S. R., Krasna A. I. Catalysis of the H2-HTO exchange by hydrogenase. A new assay for hydrogenase. Biochemistry. 1965 Dec;4(12):2747–2753. doi: 10.1021/bi00888a027. [DOI] [PubMed] [Google Scholar]
- Anthony C. The biochemistry of methylotrophic micro-organisms. Sci Prog. 1975 Summer;62(246):167–206. [PubMed] [Google Scholar]
- COHEN-BAZIRE G., SISTROM W. R., STANIER R. Y. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol. 1957 Feb;49(1):25–68. doi: 10.1002/jcp.1030490104. [DOI] [PubMed] [Google Scholar]
- Dalton H., Mortenson L. E. Dinitrogen (N 2 ) fixation (with a biochemical emphasis). Bacteriol Rev. 1972 Jun;36(2):231–260. doi: 10.1128/br.36.2.231-260.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engel R. R., Matsen J. M., Chapman S. S., Schwartz S. Carbon monoxide production from heme compounds by bacteria. J Bacteriol. 1972 Dec;112(3):1310–1315. doi: 10.1128/jb.112.3.1310-1315.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferenci T. Carbon monoxide-stimulated respiration in methane-utilizing bacteria. FEBS Lett. 1974 Apr 15;41(1):94–98. doi: 10.1016/0014-5793(74)80962-2. [DOI] [PubMed] [Google Scholar]
- Ferenci T., Strom T., Quayle J. R. Oxidation of carbon monoxide and methane by Pseudomonas methanica. J Gen Microbiol. 1975 Nov;91(1):79–91. doi: 10.1099/00221287-91-1-79. [DOI] [PubMed] [Google Scholar]
- Finlayson B. J., Pitts J. N., Jr Photochemistry of the polluted troposphere. Science. 1976 Apr 9;192(4235):111–119. doi: 10.1126/science.192.4235.111. [DOI] [PubMed] [Google Scholar]
- Fuchs G., Schnitker U., Thauer R. K. Carbon monoxide oxidation by growing cultures of Clostridium pasteurianum. Eur J Biochem. 1974 Nov 1;49(1):111–115. doi: 10.1111/j.1432-1033.1974.tb03816.x. [DOI] [PubMed] [Google Scholar]
- HUNGATE R. E. The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev. 1950 Mar;14(1):1–49. doi: 10.1128/br.14.1.1-49.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirsch P. Photosynthetic bacterium growing under carbon monoxide. Nature. 1968 Feb 10;217(5128):555–556. doi: 10.1038/217555a0. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Maugh T. H., 2nd Carbon monoxide: natural sources dwarf man's output. Science. 1972 Jul 28;177(4046):338–339. doi: 10.1126/science.177.4046.338. [DOI] [PubMed] [Google Scholar]
- Pfennig N. Rhodopseudomonas acidophila, sp. n., a new species of the budding purple nonsulfur bacteria. J Bacteriol. 1969 Aug;99(2):597–602. doi: 10.1128/jb.99.2.597-602.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Radler F., Greese K. D., Bock R., Seiler W. Die Bildung von Spuren von Kohlenmonoxid durch Saccharomyces cerevisiae und andere Mikroorganismen. Arch Microbiol. 1974;100(3):243–252. doi: 10.1007/BF00446321. [DOI] [PubMed] [Google Scholar]
- Stadtman T. C. Methane fermentation. Annu Rev Microbiol. 1967;21:121–142. doi: 10.1146/annurev.mi.21.100167.001005. [DOI] [PubMed] [Google Scholar]
- Thauer R. K., Fuchs G., Käufer B., Schnitker U. Carbon-monoxide oxidation in cell-free extracts of Clostridium pasteurianum. Eur J Biochem. 1974 Jun 15;45(2):343–349. doi: 10.1111/j.1432-1033.1974.tb03559.x. [DOI] [PubMed] [Google Scholar]
- Thauer R. K., Käufer B., Zähringer M., Jungermann K. The reaction of the iron-sulfur protein hydrogenase with carbon monoxide. Eur J Biochem. 1974 Mar 1;42(2):447–452. doi: 10.1111/j.1432-1033.1974.tb03358.x. [DOI] [PubMed] [Google Scholar]
- Uffen R. L. Growth properties of Rhodospirillum rubrum mutants and fermentation of pyruvate in anaerobic, dart conditions. J Bacteriol. 1973 Nov;116(2):874–884. doi: 10.1128/jb.116.2.874-884.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uffen R. L., Sybesma C., Wolfe R. S. Mutants of Rhodospirrillum rubrum obtained after long-term anaerobic, dark growth. J Bacteriol. 1971 Dec;108(3):1348–1356. doi: 10.1128/jb.108.3.1348-1356.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uffen R. L., Wolfe R. S. Anaerobic growth of purple nonsulfur bacteria under dark conditions. J Bacteriol. 1970 Oct;104(1):462–472. doi: 10.1128/jb.104.1.462-472.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOLIN E. A., WOLIN M. J., WOLFE R. S. FORMATION OF METHANE BY BACTERIAL EXTRACTS. J Biol Chem. 1963 Aug;238:2882–2886. [PubMed] [Google Scholar]
- Wilson D. F., Swinnerton J. W., Lamontagne R. A. Production of carbon monoxide and gaseous hydrocarbons in seawater: relation to dissolved organic carbon. Science. 1970 Jun 26;168(3939):1577–1579. doi: 10.1126/science.168.3939.1577. [DOI] [PubMed] [Google Scholar]
