Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 May;74(5):1997–2001. doi: 10.1073/pnas.74.5.1997

Light collection and harvesting processes in bacterial photosynthesis investigated on a picosecond time scale

A J Campillo *, R C Hyer *, T G Monger †,, W W Parson , S L Shapiro *
PMCID: PMC431060  PMID: 16592397

Abstract

Fluorescence lifetimes have been determined for four strains of Rhodopseudomonas sphaeroides. Chromatophore samples were excited with a single picosecond flash, and the fluorescence was detected with a streak camera. The decay times are 100 psec in strains 2.4.1 and Ga, and 300 psec in the carotenoidless strain R-26. These times are related to the transfer of energy from the light-harvesting antenna pigment molecules to the photochemical reaction center. In strain PM-8 dpl, which lacks reaction centers, the lifetime is 1.1 nsec. In addition, we have obtained curves relating the quantum yield of fluorescence to the photon density of the excitation pulse. These curves can be fit with a simple model that relates excitonic processes to properties of the photosynthetic unit and that qualitatively describes differences between the mutant strains.

Keywords: fluorescence lifetimes, energy transfer, exciton annihilation

Full text

PDF
1997

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borisov A. Y., Godik V. I. Energy transfer to the reaction centres in bacterial photosynthesis. II. Bacteriochlorophyll fluorescence lifetimes and quantum yields for some purple bacteria. J Bioenerg. 1972 Dec;3(6):515–523. doi: 10.1007/BF01539060. [DOI] [PubMed] [Google Scholar]
  2. Breton J., Geacintov N. E. Quenching of fluorescence of chlorophyll in vivo by long-lived excited states. FEBS Lett. 1976 Oct 15;69(1):86–89. doi: 10.1016/0014-5793(76)80659-x. [DOI] [PubMed] [Google Scholar]
  3. Breton J. The state of chlorophyll and carotenoid in vivo. II. A linear dichroism study of pigment orientation in photosynthetic bacteria. Biochem Biophys Res Commun. 1974 Aug 5;59(3):1011–1017. doi: 10.1016/s0006-291x(74)80080-x. [DOI] [PubMed] [Google Scholar]
  4. Busch G. E., Applebury M. L., Lamola A. A., Rentzepis P. M. Formation and decay of prelumirhodopsin at room temperatures. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2802–2806. doi: 10.1073/pnas.69.10.2802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Campillo A. J., Kollman V. H., Shapiro S. L. Intensity Dependence of the Fluorescence Lifetime of in vivo Chlorophyll Excited by a Picosecond Light Pulse. Science. 1976 Jul 16;193(4249):227–229. doi: 10.1126/science.193.4249.227. [DOI] [PubMed] [Google Scholar]
  6. Campillo A. J., Shapiro S. L., Kollman V. H., Winn K. R., Hyer R. C. Picosecond exciton annihilation in photosynthetic systems. Biophys J. 1976 Jan;16(1):93–97. doi: 10.1016/S0006-3495(76)85666-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clayton R. K. An analysis of the relations between fluorescence and photochemistry during photosynthesis. J Theor Biol. 1967 Feb;14(2):173–186. doi: 10.1016/0022-5193(67)90112-9. [DOI] [PubMed] [Google Scholar]
  8. Clayton R. K., Clayton B. J. Relations between pigments and proteins in the photosynthetic membranes of Rhodopseudomonas spheroides. Biochim Biophys Acta. 1972 Dec 14;283(3):492–504. doi: 10.1016/0005-2728(72)90265-4. [DOI] [PubMed] [Google Scholar]
  9. Colbow K. Energy transfer in photosynthesis. Biochim Biophys Acta. 1973 Sep 26;314(3):320–327. doi: 10.1016/0005-2728(73)90116-3. [DOI] [PubMed] [Google Scholar]
  10. Ebrey T. G., Clayton R. K. Polarization of fluorescence from bacterio-chlorophyll in castor oil, in chromatophores and as P870 in photosynthetic reaction centers. Photochem Photobiol. 1969 Aug;10(2):109–117. doi: 10.1111/j.1751-1097.1969.tb07227.x. [DOI] [PubMed] [Google Scholar]
  11. Geacintov N. E., Breton J. Exciton annihilation in the two photosystems in chloroplasts at 100 degrees K. Biophys J. 1977 Jan;17(1):1–15. doi: 10.1016/S0006-3495(77)85623-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Govindjee, Hammond J. H., Merkelo H. Lifetime of the excited state in vivo. II. Bacteriochlorophyll in photosynthetic bacteria at room temperature. Biophys J. 1972 Jul;12(7):809–814. doi: 10.1016/S0006-3495(72)86124-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kaufmann K. J., Dutton P. L., Netzel T. L., Leigh J. S., Rentzepis P. M. Picosecond kinetics of events leading to reaction center bacteriochlorophyll oxidation. Science. 1975 Jun 27;188(4195):1301–1304. doi: 10.1126/science.188.4195.1301. [DOI] [PubMed] [Google Scholar]
  14. Kaufmann K. J., Petty K. M., Dutton P. L., Rentzepis P. M. Picosecond kinetics in reaction centers of Rps. sphaeroides and the effects of ubiquinone extraction and reconstitution. Biochem Biophys Res Commun. 1976 Jun 7;70(3):839–845. doi: 10.1016/0006-291x(76)90668-9. [DOI] [PubMed] [Google Scholar]
  15. Mauzerall D. Multiple excitations in photosynthetic systems. Biophys J. 1976 Jan;16(1):87–91. doi: 10.1016/S0006-3495(76)85665-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Monger T. G., Cogdell R. J., Parson W. W. Triplet states of bacteriochlorophyll and carotenoids in chromatophores of photosynthetic bacteria. Biochim Biophys Acta. 1976 Oct 13;449(1):136–153. doi: 10.1016/0005-2728(76)90013-x. [DOI] [PubMed] [Google Scholar]
  17. NAKAYAMA T. O. The carotenoids of Rhodopseudomonas. II. A comparative study of mutants and the wild type. Arch Biochem Biophys. 1958 Jun;75(2):356–360. doi: 10.1016/0003-9861(58)90433-8. [DOI] [PubMed] [Google Scholar]
  18. Paschenko V. Z., Protasov S. P., Rubin A. B., Timofeev K. N., Zamazova L. M., Rubin L. B. Probing the kinetics of photosystem I and photosystem II fluorescence in pea chloroplasts on a picosecond pulse fluorometer. Biochim Biophys Acta. 1975 Nov 11;408(2):143–153. doi: 10.1016/0005-2728(75)90006-7. [DOI] [PubMed] [Google Scholar]
  19. Rockley M. G., Windsor M. W., Cogdell R. J., Parson W. W. Picosecond detection of an intermediate in the photochemical reaction of bacterial photosynthesis. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2251–2255. doi: 10.1073/pnas.72.6.2251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shank C. V., Ippen E. P., Bersohn R. Time-resolved spectroscopy of hemoglobin and its complexes with subpicosecond optical pulses. Science. 1976 Jul 2;193(4247):50–51. doi: 10.1126/science.935853. [DOI] [PubMed] [Google Scholar]
  21. Shapiro S. L., Kollman V. H., Campillo A. J. Energy transfer in photosynthesis: pigment concentration effects and fluorescent lifetimes. FEBS Lett. 1975 Jul 1;54(3):358–362. doi: 10.1016/0014-5793(75)80939-2. [DOI] [PubMed] [Google Scholar]
  22. Swenberg C. E., Geacintov N. E., Pope M. Bimolecular quenching of excitons and fluorescence in the photosynthetic unit. Biophys J. 1976 Dec;16(12):1447–1452. doi: 10.1016/S0006-3495(76)85786-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wang R. T., Clayton R. K. The absolute yield of bacteriochlorophyll fluorescence in vivo. Photochem Photobiol. 1971 Mar;13(3):215–224. doi: 10.1111/j.1751-1097.1971.tb06107.x. [DOI] [PubMed] [Google Scholar]
  24. Zankel K. L., Reed D. W., Clayton R. K. Fluorescence and photochemical quenching in photosynthetic reaction centers. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1243–1249. doi: 10.1073/pnas.61.4.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES