Abstract
125I-Labeled choleragen was bound to liposomes containing galactosyl-N-acetylgalactosaminyl-(N-acetylneuraminyl)-galactosylglucosylceramide (GM1), but not in large amounts to ganglioside-free liposomes nor to those containing N-acetylneuraminylgalactosylglucosylceramide (GM3), N-acetylgalactosaminyl-(N-acetylneuraminyl)-galactosylglucosylceramide (GM2), or N-acetylneuraminylgalactosyl-N-acetylgalactosaminyl-(N-acetylneuraminyl)-galactosylglucosylceramide (GD1a). Choleragen released trapped glucose only from GM1-liposomes. This choleragen-induced glucose release from GM1-liposomes was relatively rapid for the first few minutes, then continued more slowly. The amount of glucose released from liposomes in 30 min was dependent on both the GM1 content and choleragen concentration. Prior incubation of GM1-liposomes with anti-GM1 antiserum prevented the choleragen-dependent release of trapped glucose. After incubation of GM1-liposomes with choleragen, addition of anticholeragen antibodies and complement led to more extensive glucose release. Under these latter conditions a much smaller glucose release was observed also from liposomes containing GM1 or N-acetylneuraminylgalactosyl-N-acetylgalactosaminyl-(N-acetylneuraminyl)-galactosylglucosylceramide in the absence of choleragen. These releases were attributed to naturally-occurring antiganglioside antibodies in the antiserum and complement. Ganglioside-free liposomes did not release glucose in response to anticholeragen and complement. It appears that choleragen in the absence of other proteins binds specifically to liposomes containing GM1 and can induce permeability changes.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alving C. R., Fowble J. W., Joseph K. C. Comparative properties of four galactosyl lipids as antigens in liposomes. Immunochemistry. 1974 Aug;11(8):475–481. doi: 10.1016/0019-2791(74)90118-9. [DOI] [PubMed] [Google Scholar]
- Alving C. R., Joseph K. C., Wistar R. Influence of membrane composition on the interaction of a human monoclonal "anti-Forssman" immunoglobulin with liposomes. Biochemistry. 1974 Nov 5;13(23):4818–4824. doi: 10.1021/bi00720a021. [DOI] [PubMed] [Google Scholar]
- Bitensky M. W., Wheeler M. A., Mehta H., Miki N. Cholera toxin activation of adenylate cyclase in cancer cell membrane fragments. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2572–2576. doi: 10.1073/pnas.72.7.2572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuatrecasas P. Interaction of Vibrio cholerae enterotoxin with cell membranes. Biochemistry. 1973 Aug 28;12(18):3547–3558. doi: 10.1021/bi00742a031. [DOI] [PubMed] [Google Scholar]
- Fishman P. H., McFarland V. W., Mora P. T., Brady R. O. Ganglioside biosynthesis in mouse cells: glycosyltransferase activities in normal and virally-transformed lines. Biochem Biophys Res Commun. 1972 Jul 11;48(1):48–57. doi: 10.1016/0006-291x(72)90342-7. [DOI] [PubMed] [Google Scholar]
- Gill D. M., King C. A. The mechanism of action of cholera toxin in pigeon erythrocyte lysates. J Biol Chem. 1975 Aug 25;250(16):6424–6432. [PubMed] [Google Scholar]
- Heyningen S Van Cholera toxin: interaction of subunits with ganglioside GM1. Science. 1974 Feb 15;183(4125):656–657. doi: 10.1126/science.183.4125.656. [DOI] [PubMed] [Google Scholar]
- Holmgren J., Lönnroth I., Svennerholm L. Tissue receptor for cholera exotoxin: postulated structure from studies with GM1 ganglioside and related glycolipids. Infect Immun. 1973 Aug;8(2):208–214. doi: 10.1128/iai.8.2.208-214.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinsky S. C. Antibody-complement interaction with lipid model membranes. Biochim Biophys Acta. 1972 Feb 14;265(1):1–23. doi: 10.1016/0304-4157(72)90017-2. [DOI] [PubMed] [Google Scholar]
- McFARLANE A. S. Efficient trace-labelling of proteins with iodine. Nature. 1958 Jul 5;182(4627):53–53. doi: 10.1038/182053a0. [DOI] [PubMed] [Google Scholar]
- Moss J., Fishman P. H., Manganiello V. C., Vaughan M., Brady R. O. Functional incorporation of ganglioside into intact cells: induction of choleragen responsiveness. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1034–1037. doi: 10.1073/pnas.73.4.1034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sahyoun N., Cuatrecasas P. Mechanism of activation of adenylate cyclase by cholera toxin. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3438–3442. doi: 10.1073/pnas.72.9.3438. [DOI] [PMC free article] [PubMed] [Google Scholar]