Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Oct;73(10):3502–3505. doi: 10.1073/pnas.73.10.3502

Regulation of ornithine decarboxylase activity by guanine nucleotides: in vivo test in potassium-depleted Escherichia coli.

T T Sakai, S S Cohen
PMCID: PMC431144  PMID: 790388

Abstract

The observation that guanosine 5'-triphosphate (GTP) is an activator and guanosine 5'-diphosphate-3'-diphosphate (ppGpp) is an inhibitor of ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) of Escherichia coli [E. Hölttä et al. (1974) Biochem. Biophys. Res. Commun. 59, 1104-1111] has been confirmed. The hypothesis that synthesis of both polyamine and RNA in E. coli is regulated in vivo by these nucleotides was tested in E. coli B-207. On transfer of this K+-requiring, amino-acid-deficient strigent strain from K+-medium to Na+-medium, the organism stops protein synthesis, maintains a high rate of RNA synthesis, and increases putrescine synthesis from ornithine manyfold. Under these conditions, the cells do not markedly change their contents of GTP and ppGpp. The proposed mechanism of regulation of RNA and putrescine synthesis by guanine nucleotides does not appear to explain the metabolic phenomena observed in this organism during K+ deficiency. Nevertheless, amino acid depletion in K+-medium does result in a marked increase in ppGpp.

Full text

PDF
3502

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cashel M., Gallant J. Two compounds implicated in the function of the RC gene of Escherichia coli. Nature. 1969 Mar 1;221(5183):838–841. doi: 10.1038/221838a0. [DOI] [PubMed] [Google Scholar]
  2. Cohen S. S., Hoffner N., Jansen M., Moore M., Raina A. POLYAMINES, RNA SYNTHESIS, AND STREPTOMYCIN LETHALITY IN A RELAXED MUTANT OF E. coli STRAIN 15 TAU. Proc Natl Acad Sci U S A. 1967 Mar;57(3):721–728. doi: 10.1073/pnas.57.3.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. ENNIS H. L., LUBIN M. Dissociation of ribonucleic acid and protein synthesis in bacteria deprived of potassium. Biochim Biophys Acta. 1961 Jun 24;50:399–402. doi: 10.1016/0006-3002(61)90355-9. [DOI] [PubMed] [Google Scholar]
  4. Frey T., Newlin L. L., Atherly A. G. Strain of Escherichia coli with a temperature-sensitive mutation affecting ribosomal ribonucleic acid accumulation. J Bacteriol. 1975 Mar;121(3):923–932. doi: 10.1128/jb.121.3.923-932.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fukuma I., Cohen S. S. Polyamine synthesis and accumulation in Escherichia coli infected with bacteriophage R17. J Virol. 1973 Dec;12(6):1259–1264. doi: 10.1128/jvi.12.6.1259-1264.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gallant J., Harada B. The control of ribonucleic acid synthesis in Escherichia coli. 3. The functional relationship between purine ribonucleoside triphosphate pool sizes and the rate of ribonucleic acid accumulation. J Biol Chem. 1969 Jun 25;244(12):3125–3132. [PubMed] [Google Scholar]
  7. Hansen M. T., Pato M. L., Molin S., Fill N. P., von Meyenburg K. Simple downshift and resulting lack of correlation between ppGpp pool size and ribonucleic acid accumulation. J Bacteriol. 1975 May;122(2):585–591. doi: 10.1128/jb.122.2.585-591.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hölttä E., Jänne J., Pispa J. Ornithine decarboxylase from Escherichia coli: stimulation of the enzyme activity by nucleotides. Biochem Biophys Res Commun. 1972 Jun 9;47(5):1165–1171. doi: 10.1016/0006-291x(72)90957-6. [DOI] [PubMed] [Google Scholar]
  9. Hölttä E., Jänne J., Pispa J. The regulation of polyamine synthesis during the stringent control in Escherichia coli. Biochem Biophys Res Commun. 1974 Aug 5;59(3):1104–1111. doi: 10.1016/s0006-291x(74)80092-6. [DOI] [PubMed] [Google Scholar]
  10. Ingram L. O., Thurston E. L. Potassium requirement for cell division in Anacystis nidulans. J Bacteriol. 1976 Jan;125(1):369–371. doi: 10.1128/jb.125.1.369-371.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Khan S. R., Yamazaki H. Inapparent correlation between guanosine tetraphosphate levels and RNA contents in Escherichia coli. Biochem Biophys Res Commun. 1974 Jul 10;59(1):125–132. doi: 10.1016/s0006-291x(74)80183-x. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Munro G. F., Miller R. A., Bell C. A., Verderber E. L. Effects of external osmolality on polyamine metabolism in HeLa cells. Biochim Biophys Acta. 1975 Dec 5;411(2):263–281. doi: 10.1016/0304-4165(75)90306-2. [DOI] [PubMed] [Google Scholar]
  14. Neidhardt F. C., Bloch P. L., Smith D. F. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. doi: 10.1128/jb.119.3.736-747.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pollack M., Fisher H. W. Dissociation of ribonucleic acid and protein synthesis in mammalian cells deprived of potassium. Arch Biochem Biophys. 1976 Jan;172(1):189–190. doi: 10.1016/0003-9861(76)90065-5. [DOI] [PubMed] [Google Scholar]
  16. Raina A., Jansen M., Cohen S. S. Polyamines and the accumulation of ribonucleic acid in some polyauxotrophic strains of Escherichia coli. J Bacteriol. 1967 Nov;94(5):1684–1696. doi: 10.1128/jb.94.5.1684-1696.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rubenstein K. E., Streibel E., Massey S., Lapi L., Cohen S. S. Polyamine metabolism in potassium-deficient bacteria. J Bacteriol. 1972 Dec;112(3):1213–1221. doi: 10.1128/jb.112.3.1213-1221.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sakai T. T., Cohen S. S. Interrelation between guanosine tetraphosphate accumulation, ribonucleic acid synthesis, and streptomycin lethality in Escherichia coli CP78. Antimicrob Agents Chemother. 1975 Jun;7(6):730–735. doi: 10.1128/aac.7.6.730. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES