Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Oct;73(10):3558–3561. doi: 10.1073/pnas.73.10.3558

Erythrocyte membranes undergo cooperative, pH-sensitive state transitions in the physiological temperature range: evidence from Raman spectroscopy.

S P Verma, D F Wallach
PMCID: PMC431156  PMID: 10571

Abstract

We have examined the Raman scattering from erythrocyte ghosts at 2700 to 3000 cm-1 (CH-stretching region). Plots of the intensity (I) of the 2930 cm-1 band relative to the intensity of the thermally stable 2850 cm-1 band, i.e., the [I2930/I2850] ratio, as a function of temperature reveal a sharp discontinuity, which at pH 7.4 has a lower limit of 38 degrees and is irreversible above 42 degrees. [I2930/I2850] is stable between pH 7.0 and pH 7.4, but increases or decreases sharply below pH 7.0 or above pH 7.5, respectively. Reduction of pH to 6.5 lowers the transition temperature by about 16 degrees, and a shift to pH 6.0 drops the transition range to 0 to 7 degrees. The above effects of temperature and pH on Raman scattering closely correspond to those detected by studies on the interaction of membrane protein fluorophores and lipid-soluble fluorescence quenchers [Bieri, V. and Wallach, D.F.H. (1975) Biochim. Biophys. Acta 406, 415-423]. Taken together, these results suggest that the transitions represent concerted process, involving hydrophobic amino acid residues and lipid chains at apolar protein-lipid boundaries.

Full text

PDF
3558

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bieri V. G., Wallach D. F. Variations of lipid-protein interactions in erythrocyte ghosts as a function of temperature and pH in physiological and non-physiological ranges. A study using a paramagnetic quenching of protein fluorescence by nitroxide lipid analogues. Biochim Biophys Acta. 1975 Oct 17;406(3):415–423. doi: 10.1016/0005-2736(75)90020-6. [DOI] [PubMed] [Google Scholar]
  2. Brown K. G., Peticolas W. L., Brown E. Raman studies of conformational changes in model membrane systems. Biochem Biophys Res Commun. 1973 Sep 5;54(1):358–364. doi: 10.1016/0006-291x(73)90930-3. [DOI] [PubMed] [Google Scholar]
  3. Changeux J. P., Thiéry J., Tung Y., Kittel C. On the cooperativity of biological membranes. Proc Natl Acad Sci U S A. 1967 Feb;57(2):335–341. doi: 10.1073/pnas.57.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goodenough D. A., Stoeckenius W. The isolation of mouse hepatocyte gap junctions. Preliminary chemical characterization and x-ray diffraction. J Cell Biol. 1972 Sep;54(3):646–656. doi: 10.1083/jcb.54.3.646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Henderson R., Unwin P. N. Three-dimensional model of purple membrane obtained by electron microscopy. Nature. 1975 Sep 4;257(5521):28–32. doi: 10.1038/257028a0. [DOI] [PubMed] [Google Scholar]
  6. Jackson W. M., Kostyla J., Nordin J. H., Brandts J. F. Calorimetric study of protein transitions in human erythrocyte ghosts. Biochemistry. 1973 Sep 11;12(19):3662–3667. doi: 10.1021/bi00743a014. [DOI] [PubMed] [Google Scholar]
  7. Jost P. C., Griffith O. H., Capaldi R. A., Vanderkooi G. Evidence for boundary lipid in membranes. Proc Natl Acad Sci U S A. 1973 Feb;70(2):480–484. doi: 10.1073/pnas.70.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Larsson K., Rand R. P. Detection of changes in the environment of hydrocarbon chains by Raman spectroscopy and its application to lipid-protein systems. Biochim Biophys Acta. 1973 Nov 29;326(2):245–255. doi: 10.1016/0005-2760(73)90250-6. [DOI] [PubMed] [Google Scholar]
  9. Lippert J. L., Gorczyca L. E., Meiklejohn G. A laser Raman spectroscopic investigation of phospholipid and protein configurations in hemoglobin-free erythrocyte ghosts. Biochim Biophys Acta. 1975 Feb 28;382(1):51–57. doi: 10.1016/0005-2736(75)90371-5. [DOI] [PubMed] [Google Scholar]
  10. Lippert J. L., Peticolas W. L. Laser Raman investigation of the effect of cholesterol on conformational changes in dipalmitoyl lecithin multilayers. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1572–1576. doi: 10.1073/pnas.68.7.1572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lippert J. L., Peticolas W. L. Raman active vibrations in long-chain fatty acids and phospholipid sonicates. Biochim Biophys Acta. 1972 Sep 1;282(1):8–17. doi: 10.1016/0005-2736(72)90306-9. [DOI] [PubMed] [Google Scholar]
  12. Mendelsohn R., Sunder S., Bernstein H. J. The effect of sonication on the hydrocarbon chain conformation in model membrane systems: a Raman spectroscopic study. Biochim Biophys Acta. 1976 Feb 6;419(3):563–569. doi: 10.1016/0005-2736(76)90270-4. [DOI] [PubMed] [Google Scholar]
  13. Milanovich F. P., Yeh Y., Baskin R. J., Harney R. C. Raman spectroscopic investigations of sarcoplasmic reticulum membranes. Biochim Biophys Acta. 1976 Jan 21;419(2):243–250. doi: 10.1016/0005-2736(76)90350-3. [DOI] [PubMed] [Google Scholar]
  14. Raison J. K. The influence of temperature-induced phase changes on the kinetics of respiratory and other membrane-associated enzyme systems. J Bioenerg. 1973 Jan;4(1):285–309. doi: 10.1007/BF01516063. [DOI] [PubMed] [Google Scholar]
  15. Schmidt-Ullrich R., Verma S. P., Wallach D. F. Anomalous side chain amidation in plasma membrane proteins of simian virus 40-transformed lymphocytes indicated by isoelectric focussing and laser Raman spectroscopy. Biochem Biophys Res Commun. 1975 Dec 1;67(3):1062–1069. doi: 10.1016/0006-291x(75)90782-2. [DOI] [PubMed] [Google Scholar]
  16. Schmidt-Ullrich R., Verma S. P., Wallach D. F. Concanavalin A stimulation modifies the lipid and protein structure or rabbit thymocyte plasma membranes. A laser raman study. Biochim Biophys Acta. 1976 Mar 19;426(3):477–488. doi: 10.1016/0005-2736(76)90392-8. [DOI] [PubMed] [Google Scholar]
  17. Sheetz M. P., Chan S. I. Proton magnetic resonance studies of whole human erythrocyte membranes. Biochemistry. 1972 Feb 15;11(4):548–555. doi: 10.1021/bi00754a011. [DOI] [PubMed] [Google Scholar]
  18. Spiker R. C., Jr, Levin I. W. Raman spectra and vibrational assignments for dipalmitoyl phosphatidylcholine and structurally related molecules. Biochim Biophys Acta. 1975 Jun 23;388(3):361–373. doi: 10.1016/0005-2760(75)90095-8. [DOI] [PubMed] [Google Scholar]
  19. Stier A., Sackmann E. Spin labels as enzyme substrates. Heterogeneous lipid distribution in liver microsomal membranes. Biochim Biophys Acta. 1973 Jul 6;311(3):400–408. doi: 10.1016/0005-2736(73)90320-9. [DOI] [PubMed] [Google Scholar]
  20. Tanford C. Protein denaturation. Adv Protein Chem. 1968;23:121–282. doi: 10.1016/s0065-3233(08)60401-5. [DOI] [PubMed] [Google Scholar]
  21. Verma S. P., Wallach D. F. Effect of melittin on thermotropic lipid state transitions in phosphatidylcholine liposomes. Biochim Biophys Acta. 1976 Apr 5;426(4):616–623. doi: 10.1016/0005-2736(76)90125-5. [DOI] [PubMed] [Google Scholar]
  22. Verma S. P., Wallach D. F. Multiple thermotropic state transitions in erythrocyte membranes. A laser-Raman study of the CH-stretching and acoustical regions. Biochim Biophys Acta. 1976 Jun 17;436(2):307–318. doi: 10.1016/0005-2736(76)90196-6. [DOI] [PubMed] [Google Scholar]
  23. Verma S. P., Wallach D. F., Schmidt-Ullrich R. The structure and thermotropism of thymocyte plasma membranes as revealed by laser-raman spectroscopy. Biochim Biophys Acta. 1975 Jul 18;394(4):633–645. doi: 10.1016/0005-2736(75)90148-0. [DOI] [PubMed] [Google Scholar]
  24. Wallach D. F., Verma S. P. Raman and resonance-Raman scattering by erythrocyte ghosts. Biochim Biophys Acta. 1975 Apr 8;382(4):542–551. doi: 10.1016/0005-2736(75)90221-7. [DOI] [PubMed] [Google Scholar]
  25. Wallach D. F., Verma S. P., Weidekamm E., Bieri V. Hydrophobic binding sites in bovine serum albumin and erythrocyte ghost proteins. Study by spin-labelling, paramagnetic fluorescence quenching and chemical modification. Biochim Biophys Acta. 1974 Jul 12;356(1):68–81. doi: 10.1016/0005-2736(74)90294-6. [DOI] [PubMed] [Google Scholar]
  26. Warren G. B., Houslay M. D., Metcalfe J. C., Birdsall N. J. Cholesterol is excluded from the phospholipid annulus surrounding an active calcium transport protein. Nature. 1975 Jun 26;255(5511):684–687. doi: 10.1038/255684a0. [DOI] [PubMed] [Google Scholar]
  27. Williams R. J. Phases and phase structure in biological systems. Biochim Biophys Acta. 1975 Dec 30;416(3-4):237–286. doi: 10.1016/0304-4173(75)90001-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES