Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Oct;73(10):3603–3607. doi: 10.1073/pnas.73.10.3603

Reversion from transformed to normal phenotype by inhibition of protein synthesis in rat kidney cells infected with a temperature-sensitive mutant of Rous sarcoma virus.

J F Ash, P K Vogt, S J Singer
PMCID: PMC431166  PMID: 185620

Abstract

By the use of a rat kidney cell line infected with a temperature-sensitive Rous sarcoma virus, we have shown that, at permissive temperatures where the cells are transformed, concanavalin A induces a clustering of its cell membrane receptors into patches, and the intracellular smooth muscle myosin-like protein is in a disordered state. By contrast, with infected cells grown at nonpermissive temperatures, the addition of concanavalin A does not alter the uniform distribution of its receptors, and the smooth muscle myosin-like protein is arranged in an ordered filamentous structure. These results are consistent with the hypothesis that the myosin protein is part of an intracellular aggregating-disaggregating complex. In the normal cell it is in its aggregated state and inhibits the lateral mobility of the concanavalin A receptors in the membrane; in the transformed cell the complex is relatively disaggregated and permits the concanavalin A receptors to be mobile. The addition of protein synthesis inhibitors to infected cells grown at the permissive temperature causes the cell to change from the transformed phenotype to the normal. Removal of the reversible inhibitors causes the cells to revert to the transformed phenotype. These results show that (i) protein synthesis, presumably of an unstable product of the transforming gene of the temperature-sensitive virus, is required to maintain the transformed state in these infected cells at the permissive temperature; and (ii) protein synthesis is not required for the intracellular myosin-containing complex to revert from its disordered transformed state to its ordered normal state. This suggests that the product of the transforming gene directly or indirectly causes the disaggregation of the myosin-containing complex in the process of transformation.

Full text

PDF
3603

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ash J. F. Purification and characterization of myosin from the clonal rat glial cell strain C-6. J Biol Chem. 1975 May 10;250(9):3560–3566. [PubMed] [Google Scholar]
  2. Edelman G. M. Surface modulation in cell recognition and cell growth. Science. 1976 Apr 16;192(4236):218–226. doi: 10.1126/science.769162. [DOI] [PubMed] [Google Scholar]
  3. Edelman G. M., Yahara I. Temperature-sensitive changes in surface modulating assemblies of fibroblasts transformed by mutants of Rous sarcoma virus. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2047–2051. doi: 10.1073/pnas.73.6.2047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Huu Duc-Nguyen, Rosenblum E. N., Zeigel R. F. Persistent infection of a rat kidney cell line with Rauscher murine leukemia virus. J Bacteriol. 1966 Oct;92(4):1133–1140. doi: 10.1128/jb.92.4.1133-1140.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Inbar M., Sachs L. Mobility of carbohydrate containing sites on the surface membrane in relation to the control of cell growth. FEBS Lett. 1973 May 15;32(1):124–128. doi: 10.1016/0014-5793(73)80753-7. [DOI] [PubMed] [Google Scholar]
  6. Kurth R., Bauer H. Common tumor-specific surface antigens on cells of different species transformed by avian RNA tumor viruses. Virology. 1972 Jul;49(1):145–159. doi: 10.1016/s0042-6822(72)80016-3. [DOI] [PubMed] [Google Scholar]
  7. McNutt N. S., Culp L. A., Black P. H. Contact-inhibited revertant cell lines isolated from SV 40-transformed cells. IV. Microfilament distribution and cell shape in untransformed, transformed, and revertant Balb-c 3T3 cells. J Cell Biol. 1973 Feb;56(2):412–428. doi: 10.1083/jcb.56.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nicolson G. L. Temperature-dependent mobility of concanavalin A sites on tumour cell surfaces. Nat New Biol. 1973 Jun 13;243(128):218–220. doi: 10.1038/newbio243218a0. [DOI] [PubMed] [Google Scholar]
  9. Niederman R., Pollard T. D. Human platelet myosin. II. In vitro assembly and structure of myosin filaments. J Cell Biol. 1975 Oct;67(1):72–92. doi: 10.1083/jcb.67.1.72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Noonan K. D., Burger M. M. The relationship of concanavalin A binding to lectin-initiated cell agglutination. J Cell Biol. 1973 Oct;59(1):134–142. doi: 10.1083/jcb.59.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Olsnes S., Refsnes K., Pihl A. Mechanism of action of the toxic lectins abrin and ricin. Nature. 1974 Jun 14;249(458):627–631. doi: 10.1038/249627a0. [DOI] [PubMed] [Google Scholar]
  12. Painter R. G., Sheetz M., Singer S. J. Detection and ultrastructural localization of human smooth muscle myosin-like molecules in human non-muscle cells by specific antibodies. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1359–1363. doi: 10.1073/pnas.72.4.1359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Perdue J. F. The distribution, ultrastructure, and chemistry of microfilaments in cultured chick embryo fibroblasts. J Cell Biol. 1973 Aug;58(2):265–283. doi: 10.1083/jcb.58.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Phillips P. G., Furmanski P., Lubin M. Cell surface interactions with concanavalin A. Location of bound radiolabeled lectin. Exp Cell Res. 1974 Jun;86(2):301–308. doi: 10.1016/0014-4827(74)90717-4. [DOI] [PubMed] [Google Scholar]
  15. Pollack R., Osborn M., Weber K. Patterns of organization of actin and myosin in normal and transformed cultured cells. Proc Natl Acad Sci U S A. 1975 Mar;72(3):994–998. doi: 10.1073/pnas.72.3.994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pollard T. D., Weihing R. R. Actin and myosin and cell movement. CRC Crit Rev Biochem. 1974 Jan;2(1):1–65. doi: 10.3109/10409237409105443. [DOI] [PubMed] [Google Scholar]
  17. Rosenblith J. Z., Ukena T. E., Yin H. H., Berlin R. D., Karnovsky M. J. A comparative evaluation of the distribution of concanavalin A-binding sites on the surfaces of normal, virally-transformed, and protease-treated fibroblasts. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1625–1629. doi: 10.1073/pnas.70.6.1625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Singer S. J. Molecular biology of cellular membranes with applications to immunology. Adv Immunol. 1974;19(0):1–66. doi: 10.1016/s0065-2776(08)60251-5. [DOI] [PubMed] [Google Scholar]
  19. Singer S. J. The molecular organization of membranes. Annu Rev Biochem. 1974;43(0):805–833. doi: 10.1146/annurev.bi.43.070174.004105. [DOI] [PubMed] [Google Scholar]
  20. Wang K., Ash J. F., Singer S. J. Filamin, a new high-molecular-weight protein found in smooth muscle and non-muscle cells. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4483–4486. doi: 10.1073/pnas.72.11.4483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wang L. H., Duesberg P. H., Kawai S., Hanafusa H. Location of envelope-specific and sarcoma-specific oligonucleotides on RNA of Schmidt-Ruppin Rous sarcoma virus. Proc Natl Acad Sci U S A. 1976 Feb;73(2):447–451. doi: 10.1073/pnas.73.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weber K., Groeschel-Stewart U. Antibody to myosin: the specific visualization of myosin-containing filaments in nonmuscle cells. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4561–4564. doi: 10.1073/pnas.71.11.4561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wyke J. A. The selective isolation of temperature-sensitive mutants of Rous sarcoma virus. Virology. 1973 Apr;52(2):587–590. doi: 10.1016/0042-6822(73)90357-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES