Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Oct;73(10):3646–3650. doi: 10.1073/pnas.73.10.3646

Relationship of gliadin protein components to chromosomes in hexaploid wheats (Triticum aestivum L.)

Donald D Kasarda *, John E Bernardin *, Calvin O Qualset
PMCID: PMC431175  PMID: 16592355

Abstract

The synthesis of the A-gliadin protein fraction derived from the endosperm of the grain of hexaploid bread wheats (Triticum aestivum L.), which is toxic in celiac disease, was associated with the α arm of the 6A chromosome through use of the substitution lines of “Cheyenne” chromosomes in “Chinese Spring”. The association was made through the use of ditelocentric stocks of Chinese Spring. The synthesis of many other gliadin components in the gel electrophoretic patterns of these two varieties could be associated with particular chromosomes as well. All genes detected were located in the chromosomes of homoeologous groups 1 and 6. It is possible to remove some of the proteins toxic to people with celiac disease from wheat (flour) by chromosome manipulation. If the toxic factor is not widely distributed among the storage protein components, it may be possible to produce a wheat that would be safe for celiac patients to eat.

Keywords: celiac disease, wheat grain, gel electrophoresis, substitution lines

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernardin J. E., Kasarda D. D., Mecham D. K. Preparation and characterization of alpha-gliadin. J Biol Chem. 1967 Feb 10;242(3):445–450. [PubMed] [Google Scholar]
  2. Falchuk Z. M., Gebhard R. L., Sessoms C., Strober W. An in vitro model of gluten-sensitive enteropathy. Effect of gliadin on intestinal epithelial cells of patients with gluten-sensitive enteropathy in organ culture. J Clin Invest. 1974 Feb;53(2):487–500. doi: 10.1172/JCI107582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fishbein W. N. Quantitative densitometry of 1-50 g protein in acrylamide gel slabs with Coomassie blue. Anal Biochem. 1972 Apr;46(2):388–401. doi: 10.1016/0003-2697(72)90312-0. [DOI] [PubMed] [Google Scholar]
  4. Kasarda D. D., Bernardin J. E., Thomas R. S. Reversible Aggregation of alpha-Gliadin to Fibrils. Science. 1967 Jan 13;155(3759):203–205. doi: 10.1126/science.155.3759.203. [DOI] [PubMed] [Google Scholar]
  5. Kasarda D. D., Da Roza D. A., Ohms J. I. N-terminal sequence of alpha2-gliadin. Biochim Biophys Acta. 1974 Jun 7;351(2):290–294. doi: 10.1016/0005-2795(74)90190-1. [DOI] [PubMed] [Google Scholar]
  6. Kendall M. J., Schneider R., Cox P. S., Hawkins C. F. Gluten subfractions in coeliac disease. Lancet. 1972 Nov 18;2(7786):1065–1067. doi: 10.1016/s0140-6736(72)92344-6. [DOI] [PubMed] [Google Scholar]
  7. Platt S. G., Kasarda D. D., Qualset C. O. Varietal relationships of the alpha-gliadin proteins in wheat. J Sci Food Agric. 1974 Dec;25(12):1555–1561. doi: 10.1002/jsfa.2740251217. [DOI] [PubMed] [Google Scholar]
  8. Schrader J. W., Cunningham B. A., Edelman G. M. Functional interactions of viral and histocompatibility antigens at tumor cell surfaces. Proc Natl Acad Sci U S A. 1975 Dec;72(12):5066–5070. doi: 10.1073/pnas.72.12.5066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Strober W., Falchuk Z. M., Rogentine G. N., Nelson D. L., Klaeveman H. L. The pathogenesis of gluten-sensitive enteropathy. Ann Intern Med. 1975 Aug;83(2):242–256. doi: 10.7326/0003-4819-83-2-242. [DOI] [PubMed] [Google Scholar]
  10. Wrigley C. W., Shepherd K. W. Electrofocusing of grain proteins from wheat genotypes. Ann N Y Acad Sci. 1973 Jun 15;209:154–162. doi: 10.1111/j.1749-6632.1973.tb47526.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES