Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Oct;73(10):3695–3699. doi: 10.1073/pnas.73.10.3695

Use of thyrotropin and cholera toxin to probe the mechanism by which interferon initiates its antiviral activity.

L D Kohn, R M Friedman, J M Holmes, G Lee
PMCID: PMC431185  PMID: 10573

Abstract

Thyrotropin (10 muM) inhibited the antiviral activity of interferon. When added after interferon, thyrotropin (TSH) had no effect on antiviral activity. There was also no inhibition of interferon action in cells washed with medium between incubations with TSH and interferon. 125I-Labeled TSH and 125I-labeled cholera toxin could bind to preparations of mouse L-cell plasma membranes. The binding was specific in that it was prevented by unlabeled thyrotropin or cholera toxin, but not by insulin, glucagon, prolactin, growth hormone, human chorionic gonadotropin, or luteinizing hormone. Mouse interferon inhibited 125I-labeled TSH binding to L-cell plasma membranes. The effect of mouse interferon on 125I-labeled cholera toxon binding was more complex, inhibition occurring only after an initial enhancement at low interferon concentrations. A 10-fold higher concentration of interferon was required to inhibit 125I-labeled TSH binding. Mouse interferon was also able to displace bound 125I-labeled TSH, but not bound 125I-labeled cholera toxin. The interferon interaction with cell membranes was temperature-sensitive. Human interferon could induce changes in binding of 125I-labeled TSH and 125I-labeled cholera toxin to mouse L-cell plasma membranes similar to those induced by mouse interferon. Mouse interferon induced similar changes in plasma membranes of human KB-3 cells, which are insensitive to both human and mouse interferons. In view of these results, the species specificity of interferons does not appear to reside solely at the point of the initial interaction with their binding sites.

Full text

PDF
3695

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amir S. M., Carraway T. F., Jr, Kohn L. D., Winand R. J. The binding of thyrotropin to isolated bovine thyroid plasma membranes. J Biol Chem. 1973 Jun 10;248(11):4092–4100. [PubMed] [Google Scholar]
  2. Berman B., Vilcek J. Cellular binding characteristics of human interferon. Virology. 1974 Feb;57(2):378–386. doi: 10.1016/0042-6822(74)90177-9. [DOI] [PubMed] [Google Scholar]
  3. Besancon F., Ankel H., Basu S. Specificity and reversibility of interferon ganglioside interaction. Nature. 1976 Feb 19;259(5544):576–578. doi: 10.1038/259576a0. [DOI] [PubMed] [Google Scholar]
  4. Besancon F., Ankel H. Binding of interferon to gangliosides. Nature. 1974 Dec 6;252(5483):478–480. doi: 10.1038/252478a0. [DOI] [PubMed] [Google Scholar]
  5. Besancon F., Ankel H. Inhibition of interferon action by plant lectins. Nature. 1974 Aug 30;250(5469):784–786. doi: 10.1038/250784a0. [DOI] [PubMed] [Google Scholar]
  6. Bolonkin D., Tate R. L., Luber J. H., Kohn L. D., Winand R. J. Experimental exophthalmos. Binding of thyrotropin and an exophthalmogenic factor derived from thyrotropin to retro-orbital tissue plasma membranes. J Biol Chem. 1975 Aug 25;250(16):6516–6521. [PubMed] [Google Scholar]
  7. Cuatrecasas P. Interaction of Vibrio cholerae enterotoxin with cell membranes. Biochemistry. 1973 Aug 28;12(18):3547–3558. doi: 10.1021/bi00742a031. [DOI] [PubMed] [Google Scholar]
  8. Friedman R. M., Kohn L. D. Cholera toxin inhibits interferon action. Biochem Biophys Res Commun. 1976 Jun 21;70(4):1078–1084. doi: 10.1016/0006-291x(76)91012-3. [DOI] [PubMed] [Google Scholar]
  9. Gill D. M., King C. A. The mechanism of action of cholera toxin in pigeon erythrocyte lysates. J Biol Chem. 1975 Aug 25;250(16):6424–6432. [PubMed] [Google Scholar]
  10. Holmgren J., Lönnroth I., Svennerholm L. Tissue receptor for cholera exotoxin: postulated structure from studies with GM1 ganglioside and related glycolipids. Infect Immun. 1973 Aug;8(2):208–214. doi: 10.1128/iai.8.2.208-214.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. King C. A., Van Heyningen W. E. Deactivation of cholera toxin by a sialidase-resistant monosialosylganglioside. J Infect Dis. 1973 Jun;127(6):639–647. doi: 10.1093/infdis/127.6.639. [DOI] [PubMed] [Google Scholar]
  12. Kohn L. D., Winand R. J. Relationship of thyrotropin to exophthalmos-producing substance. Formation of an exophthalmos-producing substance by pepsin digestion of pituitary glycoproteins containing both thyrotropic and exophthalmogenic activity. J Biol Chem. 1971 Nov;246(21):6570–6575. [PubMed] [Google Scholar]
  13. Ledley F. D., Mullin B. R., Lee G., Aloj S. M., Fishman P. H., Hunt L. T., Dayhoff M. O., Kohn L. D. Sequence similarity between cholera toxin and glycoprotein hormones: implications for structure activity relationship and mechanism of action. Biochem Biophys Res Commun. 1976 Apr 19;69(4):852–859. doi: 10.1016/0006-291x(76)90452-6. [DOI] [PubMed] [Google Scholar]
  14. Mullin B. R., Aloj S. M., Fishman P. H., Lee G., Kohn L. D., Brady R. O. Cholera toxin interactions with thyrotropin receptors on thyroid plasma membranes. Proc Natl Acad Sci U S A. 1976 May;73(5):1679–1683. doi: 10.1073/pnas.73.5.1679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mullin B. R., Fishman P. H., Lee G., Aloj S. M., Ledley F. D., Winand R. J., Kohn L. D., Brady R. O. Thyrotropin-ganglioside interactions and their relationship to the structure and function of thyrotropin receptors. Proc Natl Acad Sci U S A. 1976 Mar;73(3):842–846. doi: 10.1073/pnas.73.3.842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ogburn C. A., Berg K., Paucker K. Purification of mouse interferon by affinity chromatography on anti-interferon globulin-sepharose. J Immunol. 1973 Oct;111(4):1206–1218. [PubMed] [Google Scholar]
  17. Paucker K., Dalton B. J., Ogburn C. A., Törmä E. Multiple active sites on human interferons. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4587–4591. doi: 10.1073/pnas.72.11.4587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. TYRRELL D. A. Interferon produced by cultures of calf kidney cells. Nature. 1959 Aug 8;184(Suppl 7):452–453. doi: 10.1038/184452a0. [DOI] [PubMed] [Google Scholar]
  19. Tate R. L., Schwartz H. I., Holmes J. M., Kohn L. D. Thyrotropin receptors in thyroid plasma membranes. Characteristics of thyrotropin binding and solubilization of thyrotropin receptor activity by tryptic digestion. J Biol Chem. 1975 Aug 25;250(16):6509–6515. [PubMed] [Google Scholar]
  20. Winand R. J., Kohn L. D. Relationships of thyrotropin to exophthalmic-producing substance. Purification of homogeneous glycoproteins containing both activities from [3H]-labeled pituitary extracts. J Biol Chem. 1970 Mar 10;245(5):967–975. [PubMed] [Google Scholar]
  21. Winand R. J., Kohn L. D. Thyrotropin effects on thyroid cells in culture. Effects of trypsin on the thyrotropin receptor and on thyrotropin-mediated cyclic 3':5'-AMP changes. J Biol Chem. 1975 Aug 25;250(16):6534–6540. [PubMed] [Google Scholar]
  22. Wolff J., Winand R. J., Kohn L. D. The contribution of subunits of thyroid stimulating hormone to the binding and biological activity of thyrotropin. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3460–3464. doi: 10.1073/pnas.71.9.3460. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES