Abstract
The subcellular distributions of S-adenosyl-L-methionine:tRNA methyltransferases and aminoacyl-tRNA synthetases were investigated with the use of human and mouse normal and leukemic leukocyte cell lines. Differential centrifugation of homogenized cell suspensions produced three pelleted subcellular fractions (nuclear and membrane, microsomal, and postribosomal) and a supernatant fraction. Each fraction was assayed for both methyltransferase activity and synthetase activity. The largest amounts, 40-50%, of total methyltransferase and synthetase activities were localized in either the microsomal or the postribosomal fractions, depending on cell type. In addition, the highest specific activities of these two enzyme systems were found to be present in the microsomal and postribosomal fractions. The psotribosomal fraction from leukemic leukocytes had a methyltransferase specific activity higher than that of the microsomal fraction, while the same two fractions of normal leukocytes had approximately equal activities. Specific activities of aminoacyl-tRNA synthetases were found to be approximately equal for these two fractions, whether they were from normal or leukemic leukocytes. The activity of tRNA methyltransferases and synthetases within the postribosomal fraction of the cytoplasm suggests the existence of high-molecular-weight enzyme complexes for the modification as well as the aminoacylation of tRNA.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agris P. F. Alterations of transfer RNA during erythroid differentiation of murine virus-induced leukemia cells. Arch Biochem Biophys. 1975 Sep;170(1):114–123. doi: 10.1016/0003-9861(75)90102-2. [DOI] [PubMed] [Google Scholar]
- Agris P. F., Koh H., Söll D. The effect of growth temperatures on the in vivo ribose methylation of Bacillus stearothermophilus transfer RNA. Arch Biochem Biophys. 1973 Jan;154(1):277–282. doi: 10.1016/0003-9861(73)90058-1. [DOI] [PubMed] [Google Scholar]
- Agris P. F., Spremulli L. L., Brown G. M. tRNA methylases from HeLa cells: purification and properties of an adenine-1-methylase and a guanine-N2-methylase. Arch Biochem Biophys. 1974 May;162(1):38–47. doi: 10.1016/0003-9861(74)90102-7. [DOI] [PubMed] [Google Scholar]
- Bandyopadhyay A. K., Deutscher M. P. Complex of aminoacyl-transfer RNA synthetases. J Mol Biol. 1971 Aug 28;60(1):113–122. doi: 10.1016/0022-2836(71)90451-7. [DOI] [PubMed] [Google Scholar]
- Bandyopadhyay A. K., Deutscher M. P. Lipids associated with the aminoacyl-transfer RNA synthetase complex. J Mol Biol. 1973 Feb 25;74(2):257–261. doi: 10.1016/0022-2836(73)90112-5. [DOI] [PubMed] [Google Scholar]
- Borek E. Transfer RNA and transfer RNA modification in differentiation and neoplasia. Introduction. Cancer Res. 1971 May;31(5):596–597. [PubMed] [Google Scholar]
- EAGLE H. Nutrition needs of mammalian cells in tissue culture. Science. 1955 Sep 16;122(3168):501–514. doi: 10.1126/science.122.3168.501. [DOI] [PubMed] [Google Scholar]
- Friend C., Scher W., Holland J. G., Sato T. Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: stimulation of erythroid differentiation by dimethyl sulfoxide. Proc Natl Acad Sci U S A. 1971 Feb;68(2):378–382. doi: 10.1073/pnas.68.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geels J., Bont W. S., Rezelman G. Isolation from rat liver of all aminoacyl-tRNA synthetases by centrifugation. Arch Biochem Biophys. 1971 Jun;144(2):773–774. doi: 10.1016/0003-9861(71)90386-9. [DOI] [PubMed] [Google Scholar]
- Hampel A. E., Saponara A. G., Walters R. A., Enger M. D. Low molecular weight RNAs of post-ribosomal particles. Evidence that the particulate 4-S RNAs comprise a differential population of tansfer RNA. Biochim Biophys Acta. 1972 May 29;269(3):428–440. [PubMed] [Google Scholar]
- Hampel A., Enger M. D. Subcellular distribution of aminoacyl-transfer RNA synthetases in Chinese hamster ovary cell culture. J Mol Biol. 1973 Sep 15;79(2):285–293. doi: 10.1016/0022-2836(73)90006-5. [DOI] [PubMed] [Google Scholar]
- Harris C. L., Titchener E. B., Cline A. L. Sulfur-deficient transfer ribonucleic acid in a cysteine-requiring, "relaxed" mutant of Escherichia coli. J Bacteriol. 1969 Dec;100(3):1322–1327. doi: 10.1128/jb.100.3.1322-1327.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Leboy P. S. Influence of polyamines and salts on changing patterns of tRNA methylation. FEBS Lett. 1971 Aug 1;16(2):117–120. doi: 10.1016/0014-5793(71)80347-2. [DOI] [PubMed] [Google Scholar]
- Liau M. C., Flatt N. C., Hurlbert R. B. Methylation of preribosomal and transfer RNA's by isolated nucleoli of the Novikoff rat tumor. Biochim Biophys Acta. 1970 Nov 12;224(1):282–285. doi: 10.1016/0005-2787(70)90648-9. [DOI] [PubMed] [Google Scholar]
- Schäfer K. P., Söll D. New aspects in tRNA biosynthesis. Biochimie. 1974;56(6-7):795–804. doi: 10.1016/s0300-9084(74)80500-6. [DOI] [PubMed] [Google Scholar]
- Som K., Hardesty B. Isolation and partial characterization of an aminoacyl-tRNA synthetase complex from rabbit reticulocytes. Arch Biochem Biophys. 1975 Feb;166(2):507–517. doi: 10.1016/0003-9861(75)90414-2. [DOI] [PubMed] [Google Scholar]
- Spremulli L. L., Agris P. F., Brown G. M., Rajbhandary U. L. Escherichia coli formylmethionine tRNA: methylation of specific guanine and adenine residues catalyzed by HeLa cells tRNA methylases and the effect of these methylations on its biological properties. Arch Biochem Biophys. 1974 May;162(1):22–37. doi: 10.1016/0003-9861(74)90101-5. [DOI] [PubMed] [Google Scholar]
- Vennegoor C. J., Stols A. L., Bloemendal H. More evidence for a particle character of aminoacyl-transfer RNA synthetases isolated from rat liver. J Mol Biol. 1972 Mar 28;65(2):375–378. doi: 10.1016/0022-2836(72)90289-6. [DOI] [PubMed] [Google Scholar]
- Vennegoor C., Bloemendal H. Effect of a purified post-microsomal fraction on amino acid incorporation in vitro. Eur J Biochem. 1970 Jul;15(1):161–170. doi: 10.1111/j.1432-1033.1970.tb00991.x. [DOI] [PubMed] [Google Scholar]