Abstract
Guanosine 3':5'-cyclic monophosphate (cGMP)-dependent protein kinase has been purified to homogeneity from bovine lung by affinity chromatography and characterized. Partially purified protein kinase, specifically activated by low concentrations of cGMP (22 NM), was adsorbed onto 8-(2-aminoethyl)-amino-adenosine 3':5'-cyclic monophosphate-Sepharose. After washing to remove nonspecific proteins, cGMP-dependent protein kinase was specifically eluted by 0.1 mM cGMP. The purified protein contained cGMP-dependent protein kinase and specific cGMP binding activities. Purification of the holoenzyme was possible because subunit dissociation does not occur upon cyclic nucleotide binding. cGMP-dependent protein kinase holoenzyme has an apparent molecular weight of 150,000 as determined by glycerol density gradient sedimentation. On sodium dodecyl sulfate/polyacrylamide gel electrophoresis, a single protein band of 71,000 molecular weight was observed that suggested the holoenzyme is a dimer composed of subunits of identical molecular weight. cGMP-dependent protein kinase required high concentrations of Mg+2 for optimal activity; a heat-stable protein kinase modulator which inhibited adenosine 3':5'-cyclic monophosphate-dependent protein kinase activity had no effect on the activity of purified cGMP-dependent protein kinase.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brostrom C. O., Corbin J. D., King C. A., Krebs E. G. Interaction of the subunits of adenosine 3':5'-cyclic monophosphate-dependent protein kinase of muscle. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2444–2447. doi: 10.1073/pnas.68.10.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Böhlen P., Stein S., Dairman W., Udenfriend S. Fluorometric assay of proteins in the nanogram range. Arch Biochem Biophys. 1973 Mar;155(1):213–220. doi: 10.1016/s0003-9861(73)80023-2. [DOI] [PubMed] [Google Scholar]
- Casnellie J. E., Greengard P. Guanosine 3':5'-cyclic monophosphate-dependent phosphorylation of endogenous substrate proteins in membranes of mammalian smooth muscle. Proc Natl Acad Sci U S A. 1974 May;71(5):1891–1895. doi: 10.1073/pnas.71.5.1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuatrecasas P. Protein purification by affinity chromatography. Derivatizations of agarose and polyacrylamide beads. J Biol Chem. 1970 Jun;245(12):3059–3065. [PubMed] [Google Scholar]
- Dills W. L., Jr, Beavo J. A., Bechtel P. J., Krebs E. G. Purification of rabbit skeletal muscle protein kinase regulatory subunit using cyclic adenosine-3':5'-monophosphate affinity chromatography. Biochem Biophys Res Commun. 1975 Jan 6;62(1):70–77. doi: 10.1016/s0006-291x(75)80406-2. [DOI] [PubMed] [Google Scholar]
- Dunham E. W., Haddox M. K., Goldberg N. D. Alteration of vein cyclic 3':5' nucleotide concentrations during changes in contractility. Proc Natl Acad Sci U S A. 1974 Mar;71(3):815–819. doi: 10.1073/pnas.71.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erlichman J., Hirsch A. H., Rosen O. M. Interconversion of cyclic nucleotide-activated and cyclic nucleotide-independent forms of a protein kinase from beef heart. Proc Natl Acad Sci U S A. 1971 Apr;68(4):731–735. doi: 10.1073/pnas.68.4.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- George W. J., Polson J. B., O'Toole A. G., Goldberg N. D. Elevation of guanosine 3',5'-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc Natl Acad Sci U S A. 1970 Jun;66(2):398–403. doi: 10.1073/pnas.66.2.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gill G. N., Garren L. D. A cyclic-3',5'-adenosine monophosphate dependent protein kinase from the adrenal cortex: comparison with a cyclic AMP binding protein. Biochem Biophys Res Commun. 1970 May 11;39(3):335–343. doi: 10.1016/0006-291x(70)90581-4. [DOI] [PubMed] [Google Scholar]
- Gill G. N., Garren L. D. Role of the receptor in the mechanism of action of adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1971 Apr;68(4):786–790. doi: 10.1073/pnas.68.4.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hadden J. W., Hadden E. M., Haddox M. K., Goldberg N. D. Guanosine 3':5'-cyclic monophosphate: a possible intracellular mediator of mitogenic influences in lymphocytes. Proc Natl Acad Sci U S A. 1972 Oct;69(10):3024–3027. doi: 10.1073/pnas.69.10.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hofmann F., Beavo J. A., Bechtel P. J., Krebs E. G. Comparison of adenosine 3':5'-monophosphate-dependent protein kinases from rabbit skeletal and bovine heart muscle. J Biol Chem. 1975 Oct 10;250(19):7795–7801. [PubMed] [Google Scholar]
- Hofmann F., Sold G. A protein kinase activity from rat cerebellum stimulated by guanosine-3':5'-monophosphate. Biochem Biophys Res Commun. 1972 Nov 15;49(4):1100–1107. doi: 10.1016/0006-291x(72)90326-9. [DOI] [PubMed] [Google Scholar]
- Illiano G., Tell G. P., Siegel M. E., Cuatrecasas P. Guanosine 3':5'-cyclic monophosphate and the action of insulin and acetylcholine. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2443–2447. doi: 10.1073/pnas.70.8.2443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Insel P. A., Bourne H. R., Coffino P., Tomkins G. M. Cyclic AMP-dependent protein kinase: pivotal role in regulation of enzyme induction and growth. Science. 1975 Nov 28;190(4217):896–898. doi: 10.1126/science.171770. [DOI] [PubMed] [Google Scholar]
- Kumon A., Yamamura H., Nishizuka Y. Mode of action of adenosine 3',5'-cyclic phosphate on protein kinase from rat liver. Biochem Biophys Res Commun. 1970 Dec 9;41(5):1290–1297. doi: 10.1016/0006-291x(70)90228-7. [DOI] [PubMed] [Google Scholar]
- Kuo J. F., Greengard P. Cyclic nucleotide-dependent protein kinases. VI. Isolation and partial purification of a protein kinase activated by guanosine 3',5'-monophosphate. J Biol Chem. 1970 May 25;245(10):2493–2498. [PubMed] [Google Scholar]
- Kuo J. F., Kuo W. N., Shoji M., Davis C. W., Seery V. L., Donnelly T. E., Jr Purification and general properties of guanosine 3':5'-monophosphate-dependent protein kinase from guinea pig fetal lung. J Biol Chem. 1976 Mar 25;251(6):1759–1766. [PubMed] [Google Scholar]
- Kuo J. F., Wyatt G. R., Greengard P. Cyclic nucleotide-dependent protein kinases. IX. Partial purification and some properties of guanosine 3',5'-monophosphate-dependent and adenosine 3',5'-monophosphate-dependent protein kinases from various tissues and species of Arthropoda. J Biol Chem. 1971 Dec 10;246(23):7159–7167. [PubMed] [Google Scholar]
- Kuo W. N., Kuo J. F. Isolation of stimulatory modulator of guanosine 3':5'-monophosphate-dependent protein kinase from mammalian heart devoid of inhibitory modulator of adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1976 Jul 25;251(14):4283–4286. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lee T. P., Kuo J. F., Greengard P. Role of muscarinic cholinergic receptors in regulation of guanosine 3':5'-cyclic monophosphate content in mammalian brain, heart muscle, and intestinal smooth muscle. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3287–3291. doi: 10.1073/pnas.69.11.3287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
- Miller Z., Lovelace E., Gallo M., Pastan I. Cyclic guanosine monophosphate and cellular growth. Science. 1975 Dec 19;190(4220):1213–1215. doi: 10.1126/science.173021. [DOI] [PubMed] [Google Scholar]
- Miyamoto E., Petzold G. L., Kuo J. F., Greengard P. Dissociation and activation of adenosine 3',5'-monophosphate-dependent and guanosine 3',5'-monophosphate-dependent protein kinases by cyclic nucleotides and by substrate proteins. J Biol Chem. 1973 Jan 10;248(1):179–189. [PubMed] [Google Scholar]
- Muneyama K., Bauer R. J., Shuman D. A., Robins R. K., Simon L. N. Chemical synthesis and biological activity of 8-substituted adenosine 3',5'-cyclic monophosphate derivatives. Biochemistry. 1971 Jun 8;10(12):2390–2395. doi: 10.1021/bi00788a033. [DOI] [PubMed] [Google Scholar]
- Nakazawa K., Sano M. Partial purification and properties of guanosine 3':5'-monophosphate-dependent protein kinase from pig lung. J Biol Chem. 1975 Sep 25;250(18):7415–7419. [PubMed] [Google Scholar]
- Nesbitt J. A., 3rd, Anderson W. B., Miller Z., Pastan I., Russell T. R., Gospodarowicz D. Guanylate cyclase and cyclic guanosine 3':5'-monophosphate phosphodiesterase activities and cyclic guanosine 3':5'-monophosphate levels in normal and transformed fibroblasts in culture. J Biol Chem. 1976 Apr 25;251(8):2344–2352. [PubMed] [Google Scholar]
- Nishiyama K., Katakami H., Yamamura H., Takai Y., Shimomura R. Functional specificity of guanosine 3':5'-monophosphate-dependent and adenosine 3':5'-monophosphate-dependent protein kinases from silkworm. J Biol Chem. 1975 Feb 25;250(4):1297–1300. [PubMed] [Google Scholar]
- Reimann E. M., Brostrom C. O., Corbin J. D., King C. A., Krebs E. G. Separation of regulatory and catalytic subunits of the cyclic 3',5'-adenosine monophosphate-dependent protein kinase(s) of rabbit skeletal muscle. Biochem Biophys Res Commun. 1971 Jan 22;42(2):187–194. doi: 10.1016/0006-291x(71)90086-6. [DOI] [PubMed] [Google Scholar]
- Rosen O. M., Erlichman J. Reversible autophosphorylation of a cyclic 3':5'-AMP-dependent protein kinase from bovine cardiac muscle. J Biol Chem. 1975 Oct 10;250(19):7788–7794. [PubMed] [Google Scholar]
- Rudland P. S., Gospodarowicz D., Seifert W. Activation of guanyl cyclase and intracellular cyclic GMP by fibroblast growth factor. Nature. 1974 Aug 30;250(5469):741-2, 773-4. doi: 10.1038/250741a0. [DOI] [PubMed] [Google Scholar]
- Rudland P. S., Seifert W., Gospodarowicz D. Growth control in cultured mouse fibroblasts: induction of the pleiotypic and mitogenic responses by a purified growth factor. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2600–2604. doi: 10.1073/pnas.71.7.2600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soderling T. R., Hickenbottom J. P., Reimann E. M., Hunkeler F. L., Walsh D. A., Krebs E. G. Inactivation of glycogen synthetase and activation of phosphorylase kinase by muscle adenosine 3',5'-monophosphate-dependent protein kinases. J Biol Chem. 1970 Dec 10;245(23):6317–6328. [PubMed] [Google Scholar]
- Takai Y., Nakaya S., Inoue M., Kishimoto A., Nishiyama K., Yamamura H., Nishizuka Y. Comparison of mode of activation of guanosine 3':5'-monophosphate-dependent and adenosine 3':5'-monophosphate-dependent protein kinases from silkworm. J Biol Chem. 1976 Mar 10;251(5):1481–1487. [PubMed] [Google Scholar]
- Takai Y., Nishiyama K., Yamamura H., Nishizuka Y. Guanosine 3':5'-monophosphate-dependent protein kinase from bovine cerebellum. Purification and characterization. J Biol Chem. 1975 Jun 25;250(12):4690–4695. [PubMed] [Google Scholar]
- Tao M., Salas M. L., Lipmann F. Mechanism of activation by adenosine 3':5'-cyclic monophosphate of a protein phosphokinase from rabbit reticulocytes. Proc Natl Acad Sci U S A. 1970 Sep;67(1):408–414. doi: 10.1073/pnas.67.1.408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Leemput-Coutrez M., Camus J., Christophe J. Cyclic nucleotide-dependent protein kinases of the rat pancreas. Biochem Biophys Res Commun. 1973 Sep 5;54(1):182–190. doi: 10.1016/0006-291x(73)90906-6. [DOI] [PubMed] [Google Scholar]
- Walsh D. A., Ashby C. D. Protein kinases: aspects of their regulation and diversity. Recent Prog Horm Res. 1973;29:329–359. doi: 10.1016/b978-0-12-571129-6.50012-9. [DOI] [PubMed] [Google Scholar]
- Walsh D. A., Perkins J. P., Krebs E. G. An adenosine 3',5'-monophosphate-dependant protein kinase from rabbit skeletal muscle. J Biol Chem. 1968 Jul 10;243(13):3763–3765. [PubMed] [Google Scholar]
- Wastila W. B., Stull J. T., Mayer S. E., Walsh D. A. Measurement of cyclic 3',5'-denosine monophosphate by the activation of skeletal muscle protein kinase. J Biol Chem. 1971 Apr 10;246(7):1996–2003. [PubMed] [Google Scholar]